

X3M D

Energy data manager

User Manual

Edition 8 November 2005
The document can be modified without prior information.

Index

IN	NTRODUC	CTION		6
	1.1 CC	PYRIC	SHT	6
	1.2 W	ARRAN	TY	6
			AND REPAIR FORMALITIES	
	1.3.1		HIPPING OF REPAIRED PRODUCT	
	1.3.2		n Material Authorization (RMA form)	
2				
_			safety	
3				
Ŭ			its size (mm)	
			nodules size (mm)	
			d blocking	
4			ms	
_			oply	
			nent connections	
	4.2.1		ge connection	
			nt connection	
			tar connection (4 wire)	
			elta connection (3 wire)	
		3ขบ 4.1	Connection with 2 CTs on L1 and L3	12 10
			Connection with 2 CTs on L1 and L2	
			e connection (single phase)	
			e connection (bi-phase)	
			onnection	
			modules connection	
			5 Option	
			2 Option	
_	4.4.3		4-20 mA analog output option	
5			ie	
			t set up	
	5.1.1		o sequence	
			guration procedure	
	5.1.2		Electrical system configuration	
	5.1.2		Communication characteristics configuration	
	5.1.2		Digital Outputs configuration	
	5.1.2		Pulse characteristics configuration	
		.2.4.1	Pulse output set up with Modbus registers	
	5.1.2		Alarm configuration	
		.2.5.1	Alarm set up with Modbus registers.	
	5.1.2		4-20 mA Analog Outputs configuration.	
		.2.6.1 .2.6.2	Analog output set up with Modbus registers	
	5.1.2		Clock calendar configuration	
	_	.2.7.1	Clock set up with Modbus registers.	
	5.1.2		Contrast adjustment	
		.2.8.1	Time zones	
	5.1.3		Procedure	
			1 TOGGGGTE	
	5.2.1		ings selection keys	
	5.2.1		Voltage and Frequency readings	
	_	1. 1 1.1.1.1	3P 4 W Configuration	
		.1.1.2	3P 3 W Configuration	
		1.1.1.3	3P-b 4W Configuration	
		.1.1.4	3P-b 3W Configuration	

	5.2.1.1.5	1P 2W Configuration	35
	5.2.1.1.6	2P 2W Configuration	
	5.2.1.2	Current readings	
	5.2.1.2.1	3P 4W Configuration	
	5.2.1.2.2	3P 3W Configuration	
	5.2.1.2.3 5.2.1.2.4	3P-b 4W Configuration	
	5.2.1.2.5	3P-b 3W Configuration	
	5.2.1.3	Powers	
	5.2.1.3.1	3P 4W Configuration	37
	5.2.1.3.2	3P 4W only Import Configuration	
	5.2.1.3.3	3P 3W / 3P-b 3W / 2P 2W Configuration	
	5.2.1.3.4	3P-b 4W Configuration	
	5.2.1.3.5	1P 2W Configuration	
	5.2.1.4	P.F. Visualization	
	5.2.1.4.1	3P 4W Configuration	
	5.2.1.4.2	3Pb 4W Configuration	
	5.2.1.4.3	3P 3W e 3Pb 3W Configuration	
	5.2.1.4.4	1P 2W e 2P 2W Configuration	
	5.2.1.5	Energies	
	5.2.1.6	Only Import Energy Display	
	5.2.1.7	Tariff Energies and Tariff Maximum Demand	42
	5.2.1.8	Calendar Clock and Life Time	
6	Instrument D	escription	43
	6.1 Introducti	on	43
	6.2 Simplicity	and versatility	44
	6.3 Total harr	monic distortion Measurement (THD)	44
	6.4 Energy M	leasurement	44
	6.5 Storage		44
		on Led	
	6.7 Digital Ou	utputs	45
	6.8 Pulse Ou	tput	45
		unication	
		Calendar	
		ock Format	
		y	
		nensions	
		mory Read/Write	
		e Structure	
		cord Structure	
		e and peak Energy	
		ime Bands	
7	-	itecture	
•		=eatures	
		D	
		ons	
		RS485 Port	
		RS232 Port	
		2 x 4-20 mA Analog Output	
8		and formulas	
J		Three phase with 4 wire neutral	
		able Reading:	
		surement Formulas:	
		hree phase without neutral	
		able Reading:surement Formulas:	
	メノノ I\/IA20	surement Formulas:	56

8.3	3P-b 4W Balanced Three phase with neutral	
8.3.		
8.3.		
8.4	3P-b 3W Balanced three Phase without neutral 3 wires	
8.4.		
8.4.		
8.5	1P (2W) Single phase	
8.5.	5	
8.5.		
8.6	2P (2W) Double phase	
8.6.		
8.6.	.2 Measurements Formulas:	69
8.6.		
8.6.		70
8.7	Average values and energy Calculation.	70
8.7.		
	.2 Average Powers / maximum demand (m/Max)	
	DBUS Protocol	
9.1	Foreword:	71
	"Device dependent" Functions	
9.2.	.1 (0x11) Slave ID Report	72
9.2.	(
9.3	"User defined" Functions	
9.3.	\	
9.4	Register Mapping	
9.4.		
9.4.		
9.4.	1 0	
9.4.		
9.4.	(· · · · · ·) /	
9.4.		
10 F	ile organization and management in the X3M flash memory	
10.1		
10.1	/ The state of t	
10.1		
	1.3 Structured Files	95
	mogeneous and non-homogeneous files can be distinguished by the value	
	MOGENEOUS FILE flag, in the record definition structure	
10.1		96
10.1	5	
10.1	3	
10.2	Type 0 files	
10.2		
10.2		
10.3	Type 1 files	
10.3	3	
10.4	Type 4 files	
10.4		
10.4	1 3	
10.4	71	
10.4	5	
10.4	1 5	
10.5	Type 7 files	
10.5	5	
10.5		
10.5	5.3 Example of configuration file: "EnergyCounters.xmbf"	123

10.6 Type 8 files	
10.6.1 Service configuration	125
10.6.2 Reset	126
10.6.3 Example of configuration file: "MaximumDemands.xmbf"	127
10.6.4 Clock / Calendar	128
10.6.4.1 Timezones	129
10.6.4.2 Files	
10.6.4.3 Clock related Modbus registers	130
10.6.5 Upgrading the firmware	131
11 The XMBF.EXE utility (Electrex ModBus File)	
11.1 Commands for PC handling of the files of the X3M memory	132
11.1.1 Short commands	
11.2 Operation type	133
11.2.1read Download	133
11.2.2write Upload	133
11.2.3 del Delete	135
11.2.4 create Create	135
11.2.5reboot Instrument restart from zero	135
11.3 Communication port	135
11.3.1 IP Address	135
11.3.2 Com Port	135
11.4 Protocol format	135
11.5 Address	135
11.6 File number	136
11.7 File Name	136
11.8 Destination	136
11.8.1dpath=DestinationPath	136
11.8.2dfile=DestinationFileName	136
11.9 Output format	
11.9.1 TXT Output	
11.9.2 Print to screen	137
11.9.3 HEX output	
11.9.4 HTML Output	
11.9.5 XLS output type	
11.10 Application examples	
11.10.1 Changing the readings stored by Service (1) Load Profiles	143
11.10.2 Changing the thresholds of Service (4) Events	
11.10.3 Changing the parameters stored by Service (5) Peaks	
12 Technical Characteristics	151
13 Firmware Revisions	
14 Order codes	153
15 DECLARATION OF CONFORMITY	153

INTRODUCTION

We thank you for choosing an Electrex instrument

We invite you to carefully read this instructions manual for the best use of the X3M D instruments.

1.1 COPYRIGHT

Akse S.r.l. All rights are reserved.

It is forbidden to duplicate, adapt, transcript this document without Akse written authorization, except when regulated accordingly by the Copyright Laws.

Copyright© 2003-2004

1.2 WARRANTY

This product is covered by a warranty against material and manufacturing defects for a period of 36 months period from the manufacturing date

The warranty does not cover the defects that are due to:

- Negligent and improper use
- Failures caused by atmospheric hazards
- Acts of vandalism
- · Wear out of materials

Akse reserves the right, at its discretion, to repair or substitute the faulty products

The warranty is not applicable to the products that will result defective in consequence of a negligent and improper use or an operating procedure not contemplated in this manual.

1.3 RETURN AND REPAIR FORMALITIES

Akse accepts the return of instruments for repair <u>only</u> when authorized in advance. For instrument purchased directly, the repair authorization must be requested to Akse directly by using the enclosed RMA form. We recommend otherwise to contact your local distributor for assistance on the return/repair formalities. In both the cases, the following information must be supplied:

- Company full data
- Contact name for further communication
- Product description
- Serial number
- Description of the returned accessories
- Invoice / Shipping document number and date
- Detailed description of the fault and of the operating condition when the fault occurred

The Akse repair lab will send the authorization number to the customer directly or to the distributor as per applicable case.

The RMA authorization number shall be clearly marked on the packaging and on the return transport document.

WARNING: Failure to indicate the RMA number on the external packaging will entitle our warehouse to refuse the delivery upon arrival and to return the parcel at sender's charge.

The material must be shipped:

- within 15 working days from the receipt of the return authorization number
- free destination i.e. all transport expenses at sender's charge.
- to the following address: Akse S.r.l.

Via Aldo Moro, 39 - 42100 Reggio Emilia (RE) - Italy

Atn. Repair laboratory

- the units covered by warranty must be returned in their original packaging.

1.3.1 RE-SHIPPING OF REPAIRED PRODUCT

The terms for re-shipment of repaired products are ex-works, i.e. the transport costs are at customer charge. Products returned as detective but found to be perfectly working by our laboratories, will be charged a fixed fee (40.00 Euro + VAT where applicable) to account for checking and testing time irrespective of the warranty terms.

1.3.2 Return Material Authorization (RMA form)

Request for the authorization number for the return of goods Date: Company: Contact name: TEL: FAX: Product description: Serial number: Description of the returned accessories (if any): Original purchase Invoice (or Shipping document) number and date. NB: The proof of purchase must be provided by the customer. Failure to complete this area will automatically void all warranty. Detailed description of the malfunction and of the operating conditions when the fault occurred Tick off for a quotation Should a product be found by our laboratories to be perfectly working, a fixed amount of **40 Euro** (+VAT if applicable) will be charged to account for checking and testing time irrespective of the warranty tems.

Space reserved to AKSE

R.M.A. No.

The RMA number shall be clearly indicated on the external packaging and on the shipping document:. Failure to observe this requirement will entitle the AKSE warehouse to refuse the delivery.

2 Safety

This instrument was manufactured and tested in compliance with IEC 61010 class 2 standards for operating voltages up to 250 VAC rms phase to neutral.

In order to maintain this condition and to ensure safe operation, the user must comply with the indications and markings contained in the following instructions:

- When the instrument is received, before starting its installation, check that it is intact and no damage occurred during transport.
- Before mounting, ensure that the instrument operating voltages and the mains voltage are compatible then proceed with the installation.
- The instrument power supply needs no earth connection.
- The instrument is not equipped with a power supply fuse; a suitable external protection fuse must be foreseen by the contractor.
- Maintenance and/or repair must be carried out only by qualified, authorized personnel
- If there is ever the suspicion that safe operation is no longer possible, the instrument must be taken out of service and precautions taken against its accidental use.
- Operation is no longer safe when:
 - 1) There is clearly visible damage.
 - 2) The instrument no longer functions.
 - 3) After lengthy storage in unfavorable conditions.
 - 4) After serious damage occurred during transport

The instruments X3M D must be installed in respect of all the local regulations.

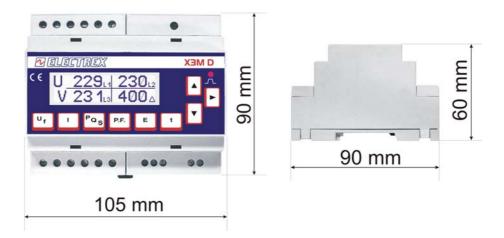
2.1 Operator safety

Warning:

Failure to observe the following instructions may lead to a serious danger of death.

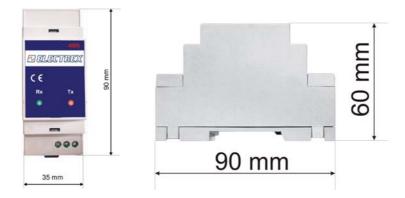
During normal operation dangerous voltages can occur on instrument terminals and on voltage and current transformers. Energized voltage and current transformers may generate lethal voltages. Follow carefully the standard safety precautions while carrying out any installation or service operation.

- The terminals of the instrument **must** not be accessible by the user after the installation. The user should only be allowed to access the instrument front panel where the display is located.
- Do not use the digital outputs for protection functions nor for power limitation functions. The instrument is suitable only for secondary protection functions.
- The instrument must be protected by a breaking device capable of interrupting both the power supply and the measurement terminals. It must be easily reachable by the operator and well identified as instrument cut-off device.
- The instrument and its connections must be carefully protected against short-circuit.


Precautions: Failure to respect the following instructions may irreversibly damage to the instrument.

- The instrument is equipped with PTC current limiting device but a suitable external protection fuse should be foreseen by the contractor.
- The outputs and the options operate at low voltage level; they cannot be powered by any unspecified external voltage.
- The application of currents not compatible with the current inputs levels will damage to the instrument.

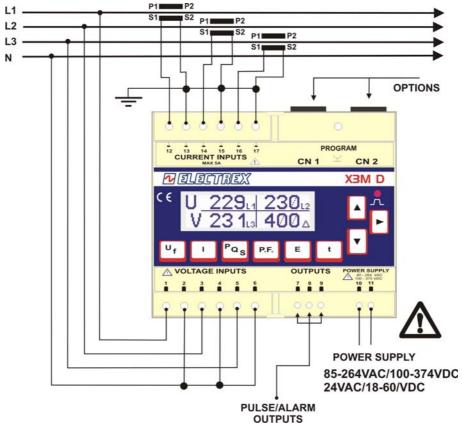
3 Mounting


3.1 Instruments size (mm)

6 DIN rail modules

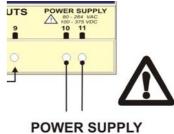
3.2 Optional modules size (mm)

2 DIN rail modules.



3.3 Fixing and blocking

The instrument (as well as the optional modules) are fixed to the DIN rail by means of the spring clip located on the rear side of the unit



4 Wiring diagrams

4.1 Power supply

The instrument is fitted with a separate power supply with extended operating range. The power supply terminals are numbered (10) and (11). Use cables with max cross-section of 4 mm².

85-264VAC / 100-374VDC 24VAC / 18-60VDC

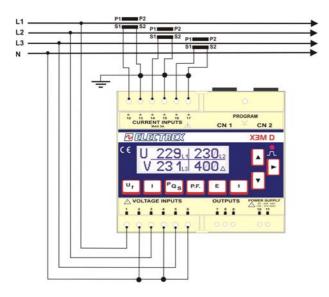
4.2 Measurement connections

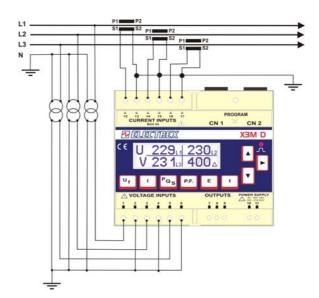
4.2.1 Voltage connection

Use cables with max cross-section of 4 mm² and connect them to the terminals marked VOLTAGE INPUT on the instrument according to the applicable diagrams that follow.

4.2.2 Current connection

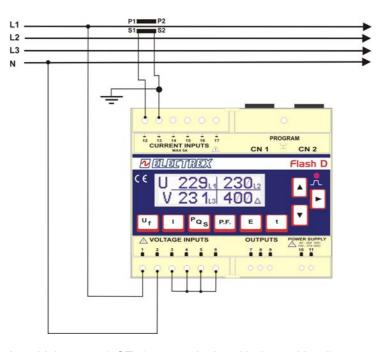
It is necessary to use external CTs with a primary rating adequate to the load to be metered and with a 5A secondary rating. The number of CTs to be used (1, 2 or 3) depends upon the type of network.


Connect the CT output(s) to the terminals marked CURRENT INPUT of the instrument according to the applicable diagrams that follow.

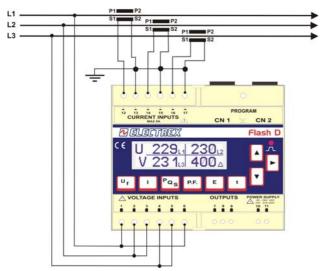

Use cables with cross-section adequate to the VA rating of the CT and to the distance to be covered. The max cross-section for the terminals is 4 mm².

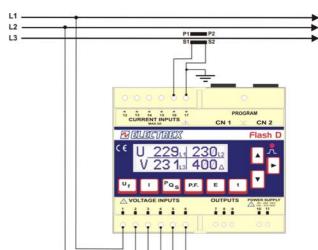
N.B. The CT secondary must always be in short circuit when not connected to the instrument in order to avoid damages and risks for the operator.

Warning: THE PHASE RELATIONSHIP AMONG VOLTAGE AND CURRENT SIGNALS MUST BE CAREFULLY RESPECTED. ALL DISREGARD OF THIS RULE OR OF THE WIRING DIAGRAM LEADS TO SEVERE MEASUREMENT ERRORS.


4.2.3 4W Star connection (4 wire)

Low voltage 3 CTs Configuration 3Ph/4W

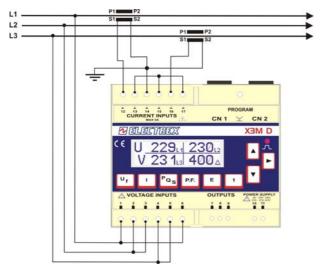

High voltage 3 PTs 3 CTs Configuration 3Ph/4W


Low Voltage 1 CT (symmetrical and balanced load) Configuration 3Ph/4W-Bal

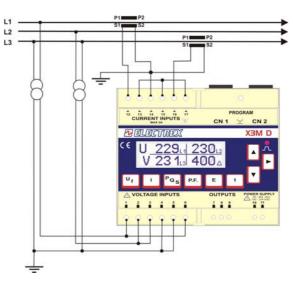
4.2.4 3W Delta connection (3 wire)

Connection with 3 CTs

Connection with 1 CT

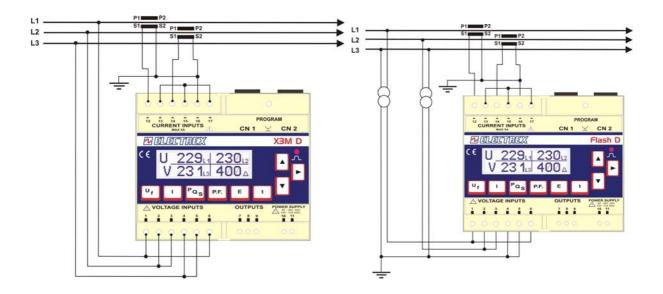

Low Voltage 3 CTs (unbalanced load)

Configuration 3Ph/3W


Low Voltage 1 CT (symmetrical and balanced load)

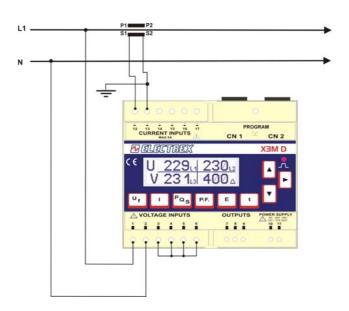
Configuration 3Ph/3W -Bal

4.2.4.1 Connection with 2 CTs on L1 and L3

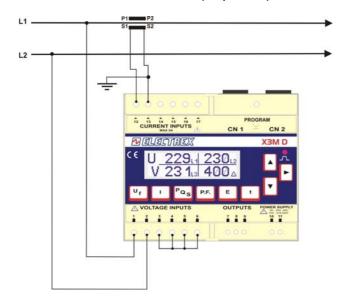


Low Voltage 2 CTs Configuration 3Ph/3W

High Voltage 2 PTs 2 CTs Configuration 3Ph/3W


4.2.4.2 Connection with 2 CTs on L1 and L2

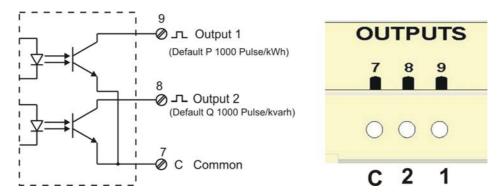
Low Voltage 2 CTs Configuration 3Ph/3W


High Voltage 2 PTs 2 CTs Configuration 3Ph/3W

4.2.5 2 Wire connection (single phase)

Low Voltage (phase-neutral) 1 CT
Configuration 1 Ph/2W

4.2.6 2 Wire connection (bi-phase)



Low Voltage (phase-phase) 1 CT Configuration 2Ph/2W

4.3 Outputs connection

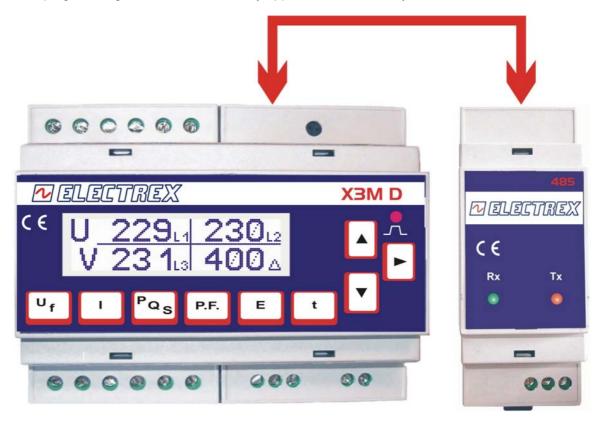
The instrument is equipped with two opto-isolated transistor outputs rated 27 Vdc, 27 mA (DIN 43864 standards).

The outputs working mode is set by default to operate as pulse output proportional to the Active energy (output 1) and to the Reactive energy (output 2). They support an output rate of 1.000 pulses per kWh (or kvarh) referred to the instrument input range without any CT and PT multiplier.

In order to calculate the energy value of each pulse the following formula must be considered.

$$K_P = \frac{K_{CT} \times K_{PT}}{Pulse / kWh}$$
 Where: $K_P = \text{energy of each pulse}$; $K_{CT} = \text{CT ratio}$; $K_{PT} = \text{PT ratio}$

Example: CT = 100/5; PT = 20.000/100
$$K_P = \frac{20 \times 200}{1000} = 4kWh / pulse$$
 or kWh = Pulse count / 4


Other pulse rate settings may be however programmed as described in the instrument set up section.

The operating mode of the digital outputs may also be changed to work as alarm output or as remote output device controlled by the Modbus protocol as described in the instrument set up section.

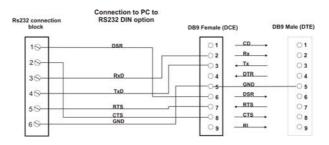
4.4 Optional modules connection

The optional modules shall be placed beside of the instrument and shall be connected to the same by means of the cable supplied with.

The optional modules are self-supplied; the instrument recognises the type of option(s) connected and the applicable programming menu will automatically appear when necessary.

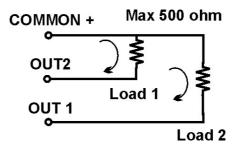
CN1 connector: suitable for the RS485 or RS232 optional modules CN2 connector: suitable for the 4-20 mA optional module or for the Hardware up-date key

4.4.1 RS485 Option



	RS485 pin out
1	A +
2	B -
3	Shield

4.4.2 RS232 Option


RS232 pin out		
1	DSR (Handshake to DTE)	
2	CTS (Handshake to DTE)	
3	RD (Data to DTE)	
4	TD (Data from DTE)	
5	RTS (Handshake from DTE)	
6	GND	

4.4.3 Dual 4-20 mA analog output option

4.20 mA nin out		
4-20 mA pin out		
1	CH1 Channel 1	
2	CH2 Channel 2	
3	Source Common +	

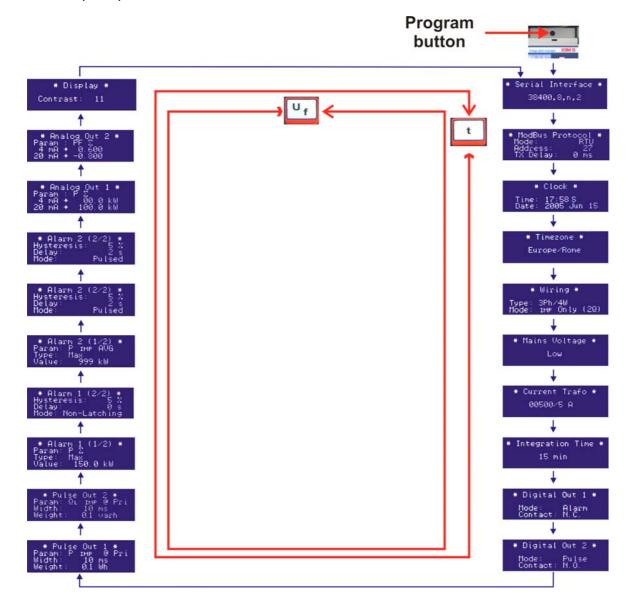
NB. The outputs are self powered; do not use external power supply.

5 Instrument use

5.1 Instrument set up

The set up procedure allows to program the instrument operating parameters.

Entry in the programming procedure is obtained by pressing the PROGRAM button that is located on the upper right side of the instrument.

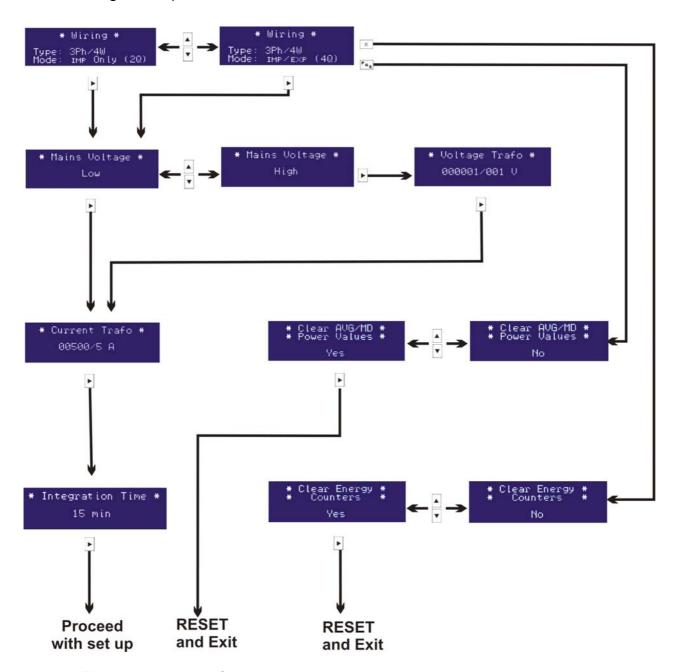

The key allows to scroll the various entry fields within a set up page as well as to pass to the next page upon scrolling all the fields of one page.

The and keys allow the modification of the flashing field being currently selected. The content of a field can be either numeric or a parameter controlling the device behavior.

The key advances to the next page, the key returns to the previous page

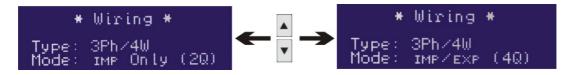
By pressing the PROGRAM button (while in any configuration page) the menu is exited and the configuration entries so far performed are saved.

5.1.1 Set up sequence


Within the first page of the instrument set up menu, the following functions are available too.

- a pressure of the key opens the energy counters reset page.
- a pressure of the Pqs key opens the reset page of the average and maximum demand.

Here below the set up page formats and the programming flow diagram


NOTE: all new setting and/or alteration of the instrument programming parameters become effective only upon exit from the programming session by pressing the PROGRAM button located on the upper right side of the instrument.

5.1.2 Configuration procedure

5.1.2.1 Electrical system configuration

The first programming page shows the configuration of the type of electrical system.

The first selection sets the type of electrical system and the type of wiring used:

- 3 phase 4 wire Star system [3Ph/4W]
- 3 phase 3 wire Delta system [3Ph/3W],
- balanced 3 phase 4 wire system (1 CT only) [3Ph/4W-Bal],
- balanced 3 phase 3 wire system [3Ph/3W-Bal],
- single phase system [1Ph/2W]

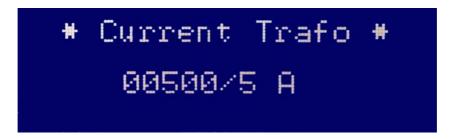
bi-phase system [2Ph/2W].

The second selection sets whether the operating mode is:

- Import only [Import (2Q)]
- Import-Export [Imp/Exp (4Q)].

The instrument is set by default to [3Ph/4W] and Import [Import (2Q)] mode. This configuration automatically compensates all possible CT output reversal.

The following page enables to set the type of voltage measurement.


If the voltage measurement is direct in low voltage, select **[Low]**; the menu passes directly to the currents setting page.

If the voltage measurement is made on the HT side and/or via a voltage transformer, select **[High]** and proceed to the next page for setting the Volatge transformer (PT) primary and secondary values Enter the PT <u>rated</u> primary and secondary values indicated on the PT label; the values taken by measurement are unsuitable to this purpose.

The primary and the secondary values must be integers, the ratio can also be fractional.


The instrument is set by default to **[Low]**

After the voltage setting, the current set up page is prompted for programming the CT values; it requires the entry of the CT primary rating and the CT secondary rating.

Ensure to enter the CT <u>rated</u> primary and secondary values as indicated on the CT label. When using 2 or 3 current transformers ensure that all the current transformers have the same ratings. The instrument is set by default to [00005/5].

The next page allows to set the integration time for calculating the Average and the Maximum Demand.

The value is expressed in minutes in a 1 to 60 min. range.

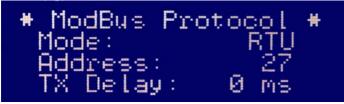
The instrument supports two average values: one calculated by using the sliding window method and the other one calculated on a fixed time basis. The time setting that is programmed by keyboard is the average demand integration time with the sliding window method. The Maximum Demand too is calculated on the sliding window basis.

The integration time on a fixed time basis is used for storing the energy data however this setting is available only as a MODBUS register via serial port setting.

5.1.2.2 Communication characteristics configuration

This menu appear only upon connection to the instrument of an RS-485 or an RS-232 optional module. The setting of the RS485 communication characteristics requires to scroll the programming pages with two keys;

The key advances to the next page, the key returns to the previous page


The first page is the following:

This page enables the setting of respectively:

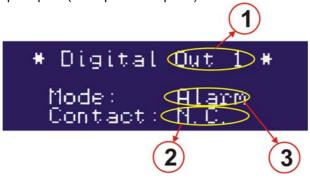
- communication speed
- number of data bits
- parity
- stop bits

All these data are correlated depending upon the stop bit value.

Additional parameters regarding the MODBUS communication protocol may be set in the next page:

and a 0 setting is also possible.

- Mode: it may be configured to RTU or to ASC (ASCII) mode.
- Slave Address
- Transmission delay; it stands for the time delay the instrument will wait prior to reply to a data query. It is expressed in milliseconds, the default value is 100 msec


5.1.2.3 Digital Outputs configuration

The instrument is equipped with 2 digital outputs that are set by default to operate as pulse outputs proportional to P_{Σ} (output 1) and Q_{Σ} (output 2) at a rate of 1.000 pulses per kWh (or kvarh) referred to the instrument range without any CT and PT multiplier.

The operating mode of digital outputs may be changed to operate as alarm output or as remote output device controlled by the Modbus protocol.

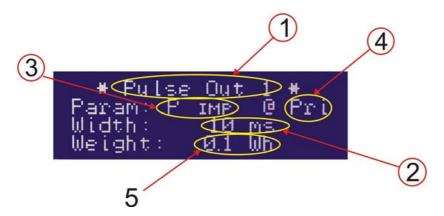
When operating on the Modbus protocol, in order to ensure a protection to the outputs in case of communication failure, it is possible to configure a watchdog timer (programmable from 0 to 60 minutes; 0 = disabled).

The following entry fields are prompted (example for output 1):

- (1) Digital out number being programmed.
- (2) Contact: it configures the rest state of the output transistor.

 n.c. normally closed or

 n.o. normally open:
- (3) Mode of operation:


PULSE (default setting) for operation as pulse output **ALARM** for operation as alarm contact output

Remote for operation as remote output device controlled via Modbus

The procedure for programming the digital output 2 is identical.

5.1.2.4 Pulse characteristics configuration

If the PULSE selection is operated, the following page is shown allowing the configuration of the pulse characteristics:

Where:

- (1) Pulse output number being programmed.
- (2) Pulse duration in mSec; programmable from 50 up to 900 in steps of 10.
- (3) Parameter selected for pulse transmission: It may be selected among:

P imp	Import Active Power
QL imp	Reactive power (inductive) with import Active Power
Qc imp	Reactive power (capacitive) with import Active Power
S imp	Apparent power with import Active Power
P exp	Export Active Power
QL exp	Reactive power (inductive) with export Active Power
Qc exp	Reactive power (capacitive) with export Active Power
S exp	Apparent power with export Active Power

- (4) **Pri**: the pulses take into account the CT and PT ratio and are referred to their primary readings **Sec:** the pulses are referred to the CT (and PT) secondary reading without any multiplier.
- (5) Pulse **weight**: programmable from 0,1 Wh up to 1 MWh through all the intermediate steps. Example: 1.0 Wh = 1000 pulses/kWh.

5.1.2.4.1 Pulse output set up with Modbus registers.

To set up the pulse output the Modbus Holding Registers from 120 to 127 have to be used. Refer to chapter 9 for the details.

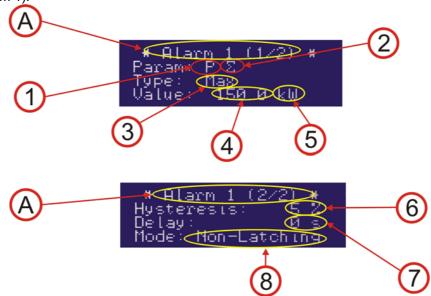
5.1.2.5 Alarm configuration

The Instrument is equipped with two alarms that are triggered by a programmable threshold on anyone of the measured parameters.

The types of alarm available are: maximum, minimum and 1-of-3.

A minimum alarm is triggered when the selected parameter is lower than the alarm threshold.

A maximum alarm is triggered when the selected parameter exceeds the alarm threshold.


A 1-of-3 alarm is triggered when anyone of the phase readings, whichever the phase involved, trespasses the alarm threshold - this alarm can be either maximum or minimum. On a 1-of-3 current alarm, the threshold is expressed as percentage (rather than a value) that stands for the unbalance between the phases. The alarm therefore triggers when the percent difference between two of the three phases exceeds the threshold; it is calculated as 100 x $(I_{max} - I_{min})/I_{max}$.

All alarms allow also the setting of an hysteresys and a delay time.

The **hysteresys** (in percent) sets the difference between the triggering threshold and the end threshold (this prevents repeated alarm triggering when the reading oscillates around the trigger value). Example: a 5% hysteresys on a threshold of 100, triggers the alarm when the reading exceeds 100 but it will switch off the alarm when the reading becomes lower than 95.

The delay time sets a time delay for triggering on the alarm after its actual occurrence (or triggering off after its actual end).

The set up of each alarm is performed on two programming pages prompting the following entry fields (example for Alarm 1).

- (A) Alarm No. and page No. identification (AL1 = alarm 1 that may be associated to output 1)
- (1) Parameter type applying to Alarm 1. The possible choices are:

None Disabled U Voltage f Frequency Current ı Ρ **Active Power** Q Reactive Power S **Apparent Power** Power Factor PF

U THD Total Harmonic Distortion (Voltage) Total Harmonic Distortion (Current) I THD

(2) Parameter definition: The possible choices are:

Average star value (applicable to voltage, current and THD only). LN Average system value (applicable to voltage and THD only).

LL

Ν Neutral value (applicable to current only)

Σ Three phase value (applicable to active, reactive and apparent power only)

L1	Phase 1 value.
L2	Phase 2 value.
L3	Phase 3 value.
L1-L2	Phase-phase (L1-L2) value (applicable to system voltages and THD only)
L2-L3	Phase-phase (L2-L3) value (applicable to system voltages and THD only)
L3-L1	Phase-phase (L3-L1) value applicable to system voltages and THD only)
1÷3 LL	Value applicable to all the three phase-phase readings of voltage or THD.
1÷ 3 LN	Value applicable to all the three phase-neutral readings of current, voltage or THD.
AVG	Average value (applicable to average powers – demand - only).

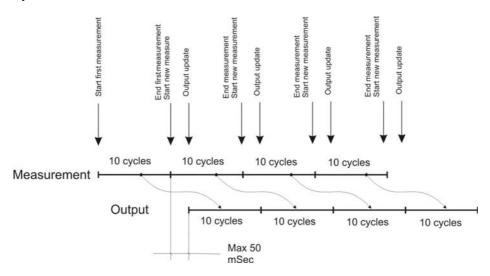
(3) Alarm type

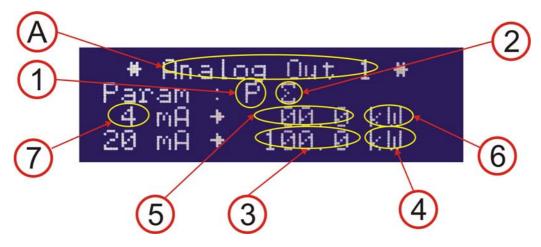
M = maximum **m** = minimum

- (4) Threshold value: programmable in the range –1999 +1999
- (5) Decimal point: the parameter value may be scaled to the powers of ten by using the m, K, M symbols and the decimal point. Range is between 10^{-3} a 10^{9} .
- (6) Hysteresys: value, from 0% to 99%
- (7) Delay time: from 0 to 99 seconds
- (4) Output trigger mode:

Non-latching = normal (the relay is active for the duration of the alarm), **Pulsed** = pulsed (the alarm triggering generates a pulse).

The Alarm 2 programming procedure is identical.


5.1.2.5.1 Alarm set up with Modbus registers.


To set up the alarm t the Modbus Holding Registers from 95 to 106 have to be used. Refer to chapter 9 for the details.

5.1.2.6 4-20 mA Analog Outputs configuration.

The instrument supports two 4-20 mA or 0-20 mA analog outputs with 500 ohms maximum load. Each output is to one of the parameters handled by the instrument.

The output is updated every 10 cycles of the network frequency (i.e. every 200mSec with 50 Hz mains) with a maximum delay of 50 mSec from the actual measurement.

- (A) Output identification: **A.o.1** = analog output 1.
- (1) Parameter applying. The possible choices are:

None	Disabled
U	Voltage
f	Frequency
I	Current
Р	Active Power
Q	Reactive Power
S	Apparent Power
PF	Power Factor

U THD Total Harmonic Distortion (voltage)
I THD Total Harmonic Distortion (current)

Phase 3 value.

(2) Parameter definition: The possible choices are:

L3

LN	Average star value (applicable to voltage, current and THD only).
LL	Average system value (applicable to voltage and THD only).
N	Neutral value (applicable to current only)
Σ	Three phase value (applicable to active, reactive and apparent power only)
L1	Phase 1 value.
L2	Phase 2 value.

L1-L2	Phase-phase (L1-L2) value (applicable to system voltages and THD only)
L2-L3	Phase-phase (L2-L3) value (applicable to system voltages and THD only)
L3-L1	Phase-phase (L3-L1) value applicable to system voltages and THD only)
AVG	Average value (applicable to average powers - demand - only).

- (3) Value to be associated to the 20 mA full scale signal; programmable in the range -1999 +1999
- (4) Scale; the parameter value may be scaled to the powers of ten by using the m, K, M symbols and the decimal point. Range is between 10⁻³ a 10⁹.
- (5) Value to be associated to the 4 mA (or 0 mA) signal; programmable in the range -1999 +1999.
- (6) Scale; the parameter value may be scaled to the powers of ten by using the m, K, M symbols and the decimal point. Range is between 10⁻³ a 10⁹.
- (7) Output type: 4-20 mA or 0-20 mA.

The procedure for programming of the Analogue output 2 is identical.

5.1.2.6.1 Analog output set up with Modbus registers.

To set up the analog output the Modbus Holding Registers from 80 to 91 have to be used. Refer to chapter 9 for the details.

5.1.2.6.2 Alarms and 4-20 mA output configuration for the average (AVG) parameters

In the Import-Export operating mode, the instrument supports a 4 quadrant measurement, but the selection can be made on one quadrant at a time.

When operating an AVG average selection, the following parameters are prompted.

P IMP AVG Import Active Power **QL** IMP AVG Reactive power (inductive) with import Active Power. **QC IMP AVG** Reactive power (capacitive) with import Active Power S IMP AVG Apparent power with import Active Power P EXP AVG Export Active Power (export) OL EXP AVG Reactive power (inductive) with export Active Power QC EXP AVG Reactive power (capacitive) with export Active Power S EXP AVG Apparent power with export Active Power

5.1.2.7 Clock calendar configuration

The X3M D is equipped with a clock/calendar with internal battery having a 15 years life time.

The clock/calendar supports the time zone handling functions and the automatic change from Standard Time to Daylight Saving Time and vice versa.

The instrument is set by default to the Europe/Rome time and time zone.

The clock/calendar setting is covered by the last two SETUP pages.

Clock format

The following Time formats are foreseen:

Coordinated Universal Time (UTC): commonly known as GMT (Greenwich Mean Time): it is the universal time, applicable to any place on earth.

Standard Time: it is the local time of a specific time zone, based on the sun cycles (known as Solar Time

Daylight Saving Time it is the local time of a specific time zone when an offset on standard time is applied (DST offset). The introduction of this offset allows to increase the availability of hours with natural light in the summer evenings.

Wall time: it is how we refer to the clock time in each time zone. The Wall time actually coincides with the Daylight Saving Time or the Standard Time depending whether an offset Solar time is occurring or not.

The difference between Standard Time and UTC time is called GMT offset.

Summarizing:

GMT offset = UTC - Standard Time

Wall Time = Standard Time + DST offset = UTC + GMT offset + DST offset

The instrument RTC supports the following time information:

- UTC Date/time
- Time zone identification

Starting from the UTC time, the instrument automatically calculates the local time (Wall Time) of any place on earth

The pertinent time zone is entered to the instrument by a numeric index (time zone index) either on the set up procedure or on a MODBUS register.

NOTE: The instrument clock operates in UTC, therefore a correct time zone attribution is essential. Check whether the time zone entry is correct before modifying the clock. Otherwise a wrong time setting could be involuntarily programmed

The clock is updated by using the local time or "wall time" that the instrument converts in UTC, consequently, if the time zone is wrong, the clock will be wrong too.

- (1) **Time zone** = Time zone set up page.
- (2) Time zone index. The default setting is 334 = Europe/Rome that is valid all over central Europe. See the enclosed tables for identification of the pertinent time zone.
- (3) **Clock:** calendar clock set up page.
- (4) Time setting in hours and minutes. Upon entry into the page the --:-- field is displayed. By leaving the field to the --:-- vaue, the time will not be modified. All time modification influences the data storage thus manual time alterations should be operated only when strictly necessary; otherwise the clock updates should preferably be handled by the external management software.

Press the and keys to display and modify the current time and date, the hours first, then the minutes. The new time entry will occur only upon exiting the programming mode. Should an involuntary modification be edited, in order to avoid a clock change, it is necessary to set the time field back to --:-. This choice is found after the last valid hour or minute (i.e. beyond 23 hours / 0 m).

- (5) Day light saving time indicator: **12:30** stands for winter time while **12:30** S stands for daylight saving or summer time.
- (6) Calendar setting: expressed in the Year, Month, Day format; example: **2005 May 25**. Should an involuntary modification be edited, in order to avoid a calendar change, it is necessary to set the calendar field back to the ---- selection.

5.1.2.7.1 Clock set up with Modbus registers.

To set up the calendar clock the Modbus Holding Registers from 140 to 165 have to be used. Refer to chapter 9 for the details.

5.1.2.8 Contrast adjustment

The and keys allow to adjust the display contract to the viewing angle in a 1 to 15 range.

The display illumination is automatically reduced 3 minutes after the last key pressure. It will automatically becomes brighter whenever pressing a key again.

5.1.2.8.1 Time zones

The pertinent time zone is entered to the instrument by a numeric index (*time zone index*). The time zone index and the standard time zone names are shown in the charts below:

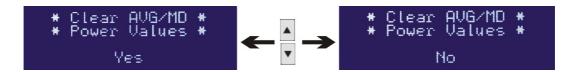
	X3M D
Standard Timezone Name (FW > 1.06)	Timezone Index
Africa/Abidjan	0
Africa/Accra	1
Africa/Addis_Ababa	2
Africa/Algiers	3
Africa/Asmera	4
Africa/Bamako	5
Africa/Bangui	6
Africa/Banjul	7
Africa/Bissau	8
Africa/Blantyre	9
Africa/Brazzaville	10
Africa/Bujumbura	11
Africa/Cairo	12
Africa/Casablanca	13
Africa/Ceuta	14
Africa/Conakry	15
Africa/Dakar	16
Africa/Dar_es_Salaam	17
Africa/Djibouti	18
Africa/Douala	19
Africa/El_Aaiun	20
Africa/Freetown	21
Africa/Gaborone	22
Africa/Harare	23
Africa/Johannesburg	24
Africa/Kampala	25
Africa/Khartoum	26
Africa/Kigali	27
Africa/Kinshasa	28
Africa/Lagos	29
Africa/Libreville	30
Africa/Lome	31
Africa/Luanda	32
Africa/Lubumbashi	33
Africa/Lusaka	34
Africa/Malabo	35
Africa/Maputo	36
Africa/Maseru	37
Africa/Mbabane	38
Africa/Mogadishu	39
Africa/Monrovia	40
Africa/Nairobi	41
Africa/Ndjamena	42
Africa/Niamey	43
Africa/Nouakchott	44
Africa/Ouagadougou	45
Africa/Porto-Novo	46
Africa/Sao_Tome	47
Africa/Timbuktu	48
, sar i ilinoitta	-

Standard Timezone Name (FW > 1.06)	X3M D Timezone Index
Africa/Tripoli	49
Africa/Tunis	50
Africa/Windhoek	51
America/Adak	52
America/Anchorage	53
America/Anguilla	54
America/Antigua	55
America/Araguaina	56
America/Argentina/Buenos_Aires	66
America/Argentina/Catamarca	71
America/Argentina/ComodRivadavia	400
America/Argentina/Cordoba	76
America/Argentina/Jujuy	109
America/Argentina/La_Rioja	401
America/Argentina/Mendoza	121
America/Argentina/Rio_Gallegos	402
America/Argentina/San_Juan	403
America/Argentina/Tucuman	404
America/Argentina/Ushuaia	405
America/Aruba	57
America/Asuncion	58
America/Bahia	59
America/Barbados	60
America/Belem	61
America/Belize	62
America/Boa_Vista	63
America/Bogota	64
America/Boise	65
America/Cambridge_Bay	67
America/Campo_Grande	68
America/Cancun	69
America/Caracas	70
America/Cayenne	72
America/Cayman	73
America/Chicago	74
America/Chihuahua	75
America/Costa_Rica	77
America/Cuiaba	78
America/Curacao	79
America/Danmarkshavn	80
America/Dawson	81
America/Dawson_Creek	82
America/Denver	83
America/Detroit	84
America/Dominica	85
America/Edmonton	86
America/Eirunepe	87
America/El_Salvador	88
America/Fortaleza	89

	V2M D
Standard Timezone Name (FW > 1.06)	X3M D Timezone Index
America/Glace_Bay	90
America/Godthab	91
America/Goose_Bay	92
America/Grand_Turk	93
America/Grenada	94
America/Guadeloupe	95
America/Guatemala	96
America/Guayaquil	97
America/Guyana	98
America/Halifax	99
America/Havana	100
America/Hermosillo	101
America/Indiana/Knox	102
America/Indiana/Marengo	103
America/Indiana/Vevay	104
America/Indianapolis	105
America/Inuvik	106
America/Iqaluit	107
America/Jamaica	108
America/Juneau	110
America/Kentucky/Monticello	111
America/La_Paz	112
America/Lima	113
America/Los_Angeles	114
America/Louisville	115
America/Maceio	116
America/Managua	117
America/Manaus	118
America/Martinique	119
America/Mazatlan	120
America/Menominee	122
America/Merida	123
America/Mexico_City	124
America/Miquelon	125
America/Monterrey	126
America/Montevideo	127
America/Montreal	128
America/Montserrat	129
America/Nassau	130
America/New_York	131
America/Nipigon	132
America/Nome	133
America/Noronha	134
America/North_Dakota/Center	135
America/Panama	136
America/Pangnirtung	137
America/Paramaribo	138
America/Phoenix	139
America/Port_of_Spain	141
America/Port-au-Prince	140
America/Porto_Velho	142
America/Puerto_Rico	143
America/Rainy_River	144

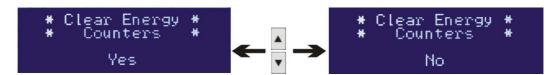
Standard Timezone Name (FW > 1.06)	X3M D Timezone Index
America/Rankin_Inlet	145
America/Recife	146
America/Pegina	147
America/Regina America/Rio_Branco	148
America/Santiago	149
America/Santo_Domingo	150
America/Sao_Paulo	 151
America/Scoresbysund	152
America/St_Johns	153
America/St_Kitts	154
America/St_Lucia	155
America/St_Thomas	156
America/St_Vincent	 157
America/Swift_Current	158
America/Tegucigalpa	159
America/Thule	160
America/Thunder_Bay	161
America/Tiiyana	162
America/Tijuana	163
America/Toronto	164
America/Tortola	165
America/Vancouver	166
America/Whitehorse	167
America/Winnipeg	168
America/Yakutat	169
America/Yellowknife	
Antarctica/Casey	170
Antarctica/Davis	171
Antarctica/DumontDUrville	172
Antarctica/Mawson	173 174
Antarctica/McMurdo	174 175
Antarctica/Palmer	
Antarctica/Rothera	176
Antarctica/Syowa	177
Antarctica/Vostok	178
Asia/Aden	179
Asia/Almaty	180
Asia/Amman	181
Asia/Anadyr	182
Asia/Aqtau	183
Asia/Aqtobe	184
Asia/Ashgabat	185
Asia/Baghdad	186
Asia/Bahrain	187
Asia/Baku	188
Asia/Bangkok	189
Asia/Beirut	190
Asia/Bishkek	191
Asia/Brunei	192
Asia/Calcutta	193
Asia/Choibalsan	194
Asia/Chongqing	195
Asia/Colombo	196
Asia/Damascus	197

	X3M D
Standard Timezone Name (FW > 1.06)	X3M D Timezone Index
Asia/Dhaka	198
Asia/Dili	199
Asia/Dubai	200
Asia/Dushanbe	201
Asia/Gaza	202
Asia/Harbin	203
Asia/Hong_Kong	204
Asia/Hovd	205
Asia/Irkutsk	206
Asia/Jakarta	207
Asia/Jayapura	208
Asia/Jerusalem	209
Asia/Kabul	210
Asia/Kamchatka	211
Asia/Karachi	212
Asia/Kashgar	213
Asia/Katmandu	214
Asia/Krasnoyarsk	215
Asia/Kuala_Lumpur	216
Asia/Kuching	217
Asia/Kuwait	218
Asia/Macau	219
Asia/Magadan	220
Asia/Makassar	221
Asia/Manila	222
Asia/Muscat	223
Asia/Nicosia	224
Asia/Novosibirsk	225
Asia/Omsk	226
Asia/Oral	227
Asia/Phnom_Penh	228
Asia/Pontianak	229
Asia/Pyongyang	230
Asia/Qatar	231
Asia/Qyzylorda	232
Asia/Rangoon	233
Asia/Riyadh	234
Asia/Saigon	235
Asia/Sakhalin	236
Asia/Samarkand	237
Asia/Seoul	238
Asia/Shanghai	239
Asia/Singapore	240
Asia/Taipei	241
Asia/Tashkent	242
Asia/Tbilisi	243
Asia/Tehran	244
Asia/Thimphu	245
Asia/Tokyo	246
Asia/Ulaanbaatar	247
Asia/Urumqi	248
Asia/Vientiane	249
Asia/Vladivostok	250


Standard Timezone Name (FW > 1.06)	X3M D Timezone Index
Asia/Yakutsk	251
Asia/Yekaterinburg	252
Asia/Yerevan	253
Atlantic/Azores	254
Atlantic/Bermuda	255
Atlantic/Canary	256
Atlantic/Cape_Verde	257
Atlantic/Faeroe	258
Atlantic/Madeira	259
Atlantic/Reykjavik	260
Atlantic/South_Georgia	261
Atlantic/St_Helena	262
Atlantic/Stanley	263
Australia/Adelaide	264
Australia/Brisbane	265
Australia/Broken_Hill	266
Australia/Darwin	267
Australia/Hobart	268
Australia/Hobart Australia/Lindeman	269
Australia/Lord Howe	270
	271
Australia/Melbourne	272
Australia/Perth	273
Australia/Sydney	274
CET	275
EET	
Etc/GMT	276
Etc/GMT+1	277
Etc/GMT+10	278
Etc/GMT+11	279
Etc/GMT+12	280
Etc/GMT+2	281
Etc/GMT+3	282
Etc/GMT+4	283
Etc/GMT+5	284
Etc/GMT+6	285
Etc/GMT+7	286
Etc/GMT+8	287
Etc/GMT+9	288
Etc/GMT-1	289
Etc/GMT-10	290
Etc/GMT-11	291
Etc/GMT-12	292
Etc/GMT-13	293
Etc/GMT-14	294
Etc/GMT-2	295
Etc/GMT-3	296
Etc/GMT-4	297
Etc/GMT-5	298
Etc/GMT-6	299
Etc/GMT-7	300
Etc/GMT-8	301
Etc/GMT-9	302
Etc/UCT	303

	X3M D
Standard Timezone Name (FW > 1.06)	ี่ X3M D Timezone Index
Etc/UTC	304
Europe/Amsterdam	305
Europe/Andorra	306
Europe/Athens	307
Europe/Belfast	308
Europe/Belgrade	309
Europe/Berlin	310
Europe/Brussels	311
Europe/Bucharest	312
Europe/Budapest	313
Europe/Chisinau	314
Europe/Copenhagen	315
Europe/Dublin	316
Europe/Gibraltar	317
Europe/Helsinki	318
Europe/Istanbul	319
Europe/Kaliningrad	320
Europe/Kiev	321
Europe/Lisbon	322
Europe/London	323
Europe/Luxembourg	324
Europe/Madrid	325
Europe/Malta	326
Europe/Minsk	327
Europe/Monaco	328
Europe/Moscow	329
Europe/Oslo	330
Europe/Paris	331
Europe/Prague	332
Europe/Riga	333
Europe/Rome	334
Europe/Samara	335
Europe/Simferopol	336
Europe/Sofia	337
Europe/Stockholm	338
Europe/Tallinn	339
Europe/Tirane	340
Europe/Uzhgorod	341
Europe/Vaduz	342
Europe/Vienna	343 344
Europe/Vilnius	
Europe/Warsaw	345
Europe/Zaporozhye	346
Europe/Zurich	347 348
Indian/Antananarivo	349
Indian/Chagos	350
Indian/Christmas	351
Indian/Cocos Indian/Comoro	352
	353
Indian/Kerguelen Indian/Mahe	354
Indian/Maldives	355
Indian/Mauritius	356
maian/iviaunius	

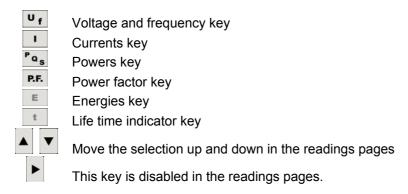
Standard Timezone Name (FW > 1.06)	X3M D Timezone Index
Indian/Mayotte	357
Indian/Reunion	358
MET	359
Pacific/Apia	360
Pacific/Auckland	361
Pacific/Chatham	362
Pacific/Easter	363
Pacific/Efate	364
Pacific/Enderbury	365
Pacific/Fakaofo	366
Pacific/Fiji	367
Pacific/Funafuti	368
Pacific/Galapagos	369
Pacific/Gambier	370
Pacific/Guadalcanal	371
Pacific/Guam	372
Pacific/Honolulu	373
Pacific/Johnston	374
Pacific/Kiritimati	375
Pacific/Kosrae	376
Pacific/Kwajalein	377
Pacific/Majuro	378
Pacific/Marquesas	379
Pacific/Midway	380
Pacific/Nauru	381
Pacific/Niue	382
Pacific/Norfolk	383
Pacific/Noumea	384
Pacific/Pago_Pago	385
Pacific/Palau	386
Pacific/Pitcairn	387
Pacific/Ponape	388
Pacific/Port_Moresby	389
Pacific/Rarotonga	390
Pacific/Saipan	391
Pacific/Tahiti	392
Pacific/Tarawa	393
Pacific/Tongatapu	394
Pacific/Truk	395
Pacific/Wake	396
Pacific/Wallis	397
Pacific/Yap	398
WET	399
VVL I	550


The X3M D features a built-in database including all the information (*time zone rules*) which allow to calculate the GMT and DST offsets at any time in each time zones listed in the charts. By knowing the GMT and the DST offset, the instrument is able to convert from universal time to local time and vice versa. The database with the time zone data is compiled from the pack distributed by *elsie.nci.nih.gov* (*tzdataXXXXX.tar.gz*) and it is integrated in the instrument firmware. Database updates are therefore possible only by installing a new version of firmware.

5.1.3 Reset Procedure

In order to reset the Average Powers, the Maximum Demand and the Energy counters it is necessary to:

- Enter into the programming menu by pressing the PROGRAM button.
- Press the Pas key to display the powers reset page or the key to display the energy counters reset page.
- Select YES to reset, NO to skip. Resetting is confirmed by pressing the key that executes the rese
 and returns automatically to the readings pages.
- The reset operation clears all the average powers and the Maximum Demand.



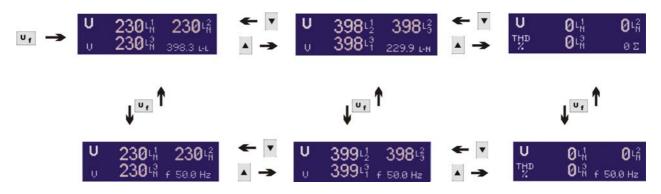
It is also possible to exit the procedure, at any time without resetting, by pressing the PROGRAM button.

5.2 Readings

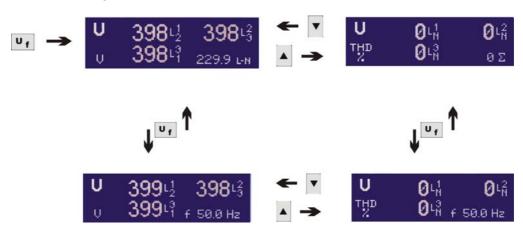
5.2.1 Readings selection keys

The selection of the readings and of the reading pages is made by means of the following keys:

5.2.1.1 Voltage and Frequency readings


By pressing once the uf key, a first voltage readings page is prompted showing the phase-neutral voltages and, on the bottom right side of the display, the average 3-phase system voltage.

By pressing the key, a second voltage readings page is prompted showing the phase-phase voltages and, on the bottom right side of the display, the average phase-neutral system voltage.


Another pressure of the A key prompts the total harmonic distortion readings of the voltage of each phase.

By pressing again the ut key the frequency is shown on the lower right side on the display.

5.2.1.1.1 3P 4 W Configuration

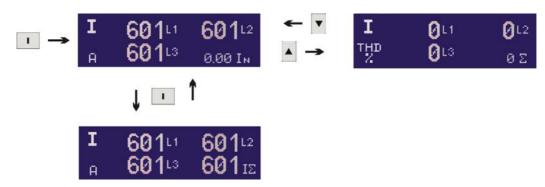
5.2.1.1.2 3P 3 W Configuration

5.2.1.1.3 3P-b 4W Configuration

5.2.1.1.4 3P-b 3W Configuration

5.2.1.1.5 1P 2W Configuration

5.2.1.1.6 2P 2W Configuration



5.2.1.2 Current readings

By pressing the key, the current readings page is prompted showing the currents of each phase as well as the neutral current.

A pressure of the key prompts the total harmonic distortion readings of the current of each phase.

5.2.1.2.1 3P 4W Configuration

5.2.1.2.2 3P 3W Configuration

5.2.1.2.3 3P-b 4W Configuration

5.2.1.2.4 3P-b 3W Configuration

5.2.1.2.5 1P 2W and 2P 2W Configuration

5.2.1.3 Powers

By pressing the Pas key the power reading pages for P Active Power, Q Reactive power and S Apparent power are scrolled in sequence.

By pressing the A and keys the average and the maximum powers (Demand and Maximum Demand readings) are displayed.

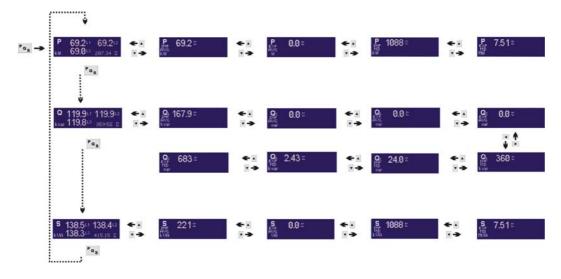
The displayed parameters are:

P Active power of each phase and three phase

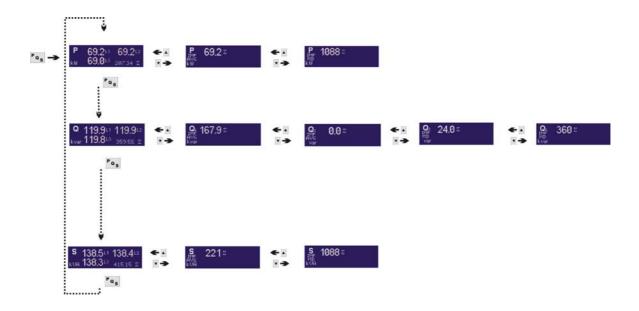
P IMP AVG Import average Active Power
P EXP AVG Export average Active Power

P IMP MD Max Demand on import Active Power
P EXP MD Max Demand on export Active Power

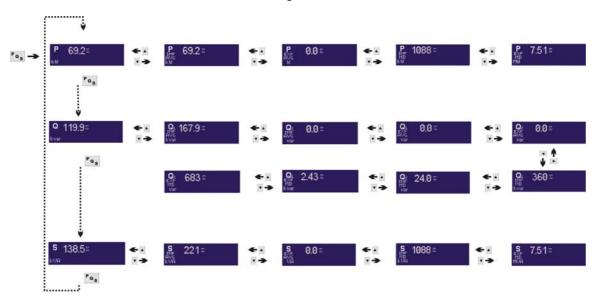
Q Reactive power of each phase and three phase

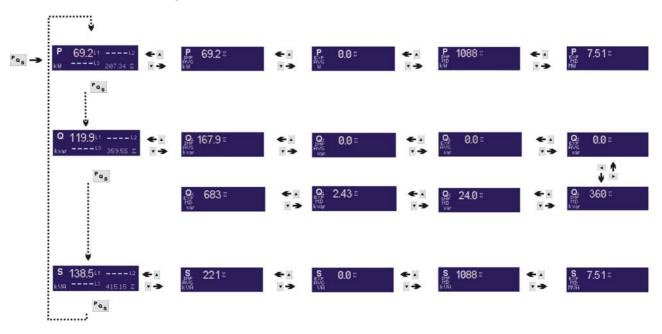

QL IMP AVG
Average reactive (inductive) power with import Active Power
QC IMP AVG
Average reactive (capacitive) power with import Active Power
QL EXP AVG
Average reactive (inductive) power with export Active Power
Qc EXP AVG
Average reactive (capacitive) power with export Active Power

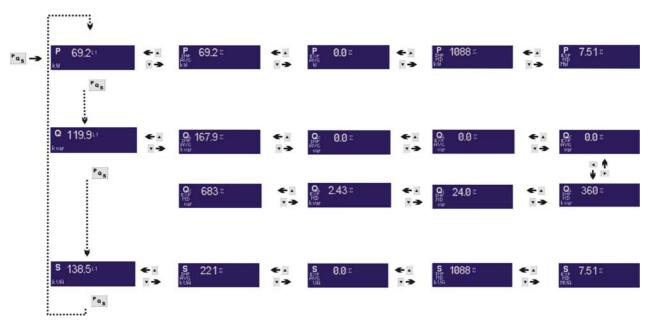
QL IMP MD Max Demand on reactive (inductive) power with import Active Power
QC IMP MD Max Demand on reactive (capacitive) power with import Active Power
QL EXP MD Max Demand on reactive (inductive) power with export Active Power
QC EXP MD Max Demand on reactive (capacitive) power with export Active Power


S Apparent power of each phase and three phase
S IMP AVG Average apparent power with import Active Power
Average apparent power with export Active Power

S IMP MD Max Demand on apparent power with import Active Power **S EXP MD** Max Demand on apparent power with export Active Power


5.2.1.3.1 3P 4W Configuration


5.2.1.3.2 3P 4W only Import Configuration.


5.2.1.3.3 3P 3W / 3P-b 3W / 2P 2W Configuration

5.2.1.3.4 3P-b 4W Configuration

5.2.1.3.5 1P 2W Configuration

5.2.1.4 P.F. Visualization

By pressing the P.F. key, the power factor readings page is prompted showing the PF of each phase as well as the 3-phase reading. Only one page is displayed.

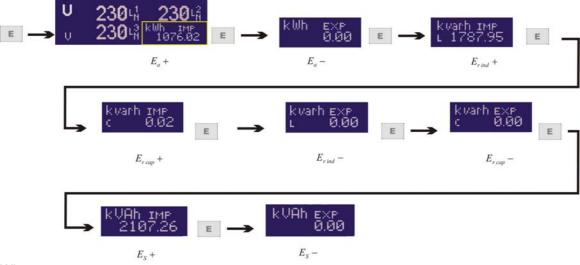
The – sign ahead of the value identifies a capacitive (leading) reading.

5.2.1.4.1 3P 4W Configuration

5.2.1.4.2 3Pb 4W Configuration

5.2.1.4.3 3P 3W e 3Pb 3W Configuration

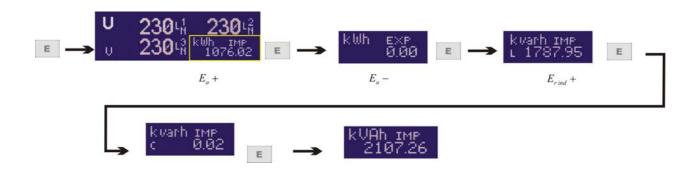
5.2.1.4.4 1P 2W e 2P 2W Configuration



5.2.1.5 Energies

By pressing repeatedly the key, the several energy readings will be displayed consecutively on the lower right part of the screen.

The energy readings may be recalled at any time irrespective the readings page being displayed.


The energy readings will however disappear upon selection of another readings page but they may be recalled, at any time, by pressing the key.

Where:

- (E_a^+) Import active energy
- (E_a^-) Export active energy
- (E_{rind}^{+}) Reactive energy (inductive) with import Active Power
- $(E_{r\,cap}^+)$ Reactive energy (capacitive) with import Active Power
- (E_{rind}^{-}) Reactive energy (inductive) with export Active Power
- (E_{rcap}^{-}) Reactive energy (capacitive) with export Active Power
- (E_s^+) Apparent energy with import Active Power
- (E_s^-) Apparent energy with import Active Power

5.2.1.6 Only Import Energy Display

5.2.1.7 Tariff Energies and Tariff Maximum Demand

By pressing the Pas key for 2 seconds from any page, it is possible to display the Energy counters and the Max Demand of each tariff.

The top left symbol identifies the parameter being displayed and the Maximum Demand reading is shown next to it.

The tariff number is indicated on the top right while the energy reading is indicated below.

All the energy and MD readings applicable to the 8 parameters of a 4 quadrant measurement are foreseen.

Press shortly the Pqs key to scroll the different parameters.

Press the and keys to scroll the different tariffs.

To move back to the traditional reading mode, press the Pas key again for 2 seconds.

NB

In the case the instrument is not loaded with a proper calendar file or in the case some tariffs are not included in the calendar, dashes will be displayed in place of the readings.

5.2.1.8 Calendar Clock and Life Time

By pressing the key the instrument calendar clock and the life time reading are displayed.

The life time is the instrument operating time (when powered on) since it was manufactured.

The readings is expressed in hours and hour hundredths; it can reach 99.999 hours equal to 11 years. The life time reading reset is not possible.

6 Instrument Description

6.1 Introduction

X3M D is a microprocessor based energy analyzer with high flexibility and high accuracy.

The patented digital measuring system guarantees high performance with age and thermal stability. This is achieved through sophisticated strategies of automatic offset compensation - used throughout the measurement chain – and through a Phase Locked Loop (PLL) sampling probe.

The real time sampling of the three phases voltage and current, makes it suitable to supervise the voltage and quick current variations quality.

It can verify when a maximum or minimum threshold is exceeded in every single voltage/current cycle

The automatic rescaling feature on current inputs allows a wide measuring range - from 20mA to 6A in direct connection.

All "true-RMS" measures are obtained with continuous sampling of the voltage and current waveforms: this guarantees maximum precision even when rapidly changing loads are present (e.g. electric welding machines).

X3M D can be programmed to analyze three phase networks, both on three and four wires with low or high voltage with 1, 2 or 3 CTs in addition to single phase measurements. The option of setting any required conversion factor on the voltage and current inputs makes X3M D suitable for use in both high and low voltage networks.

It can measure the energy and the Maximum Demand on the 4 quadrants (active, reactive and apparent) divided according to the Tariff time bands with internal calendar. The instrument can handle 2 different calendars, one of which operates while the other can be automatically activated at a programmed date and time

It contains a 2MByte flash disk memory where data are stored according to record files according to ModBus standard and can be read and written using the ModBus functions: "write general file" and "read general file".

The time is kept by a compensated, stabilized quartz clock and can be extracted in most required formats. By programming the time zone, the changes from standard to daylight saving time are automatically handled in any country. The clock has a backup battery, with a 15 year lifetime, and can be set either using the modbus protocol or the keyboard.

The instrument firmware is kept in flash memory and can be updated through a serial port, using the same communication protocol. The upgrade uses special security provisions to ensure continued operations even in presence of communication failures.

All input, output, and power supply ports are electrically separated for maximum safety and noise reduction under any operating conditions.

The in-house testing and calibration process is completely automated: a conformity certificate and calibration report are supplied with each unit.

The custom designed LCD display has three 3 $\frac{1}{2}$ digit lines and a 7 digit line and an extended symbol and character set, allowing the simultaneous display of 4 measurements. Three 11-segment bar graphs give immediate feedback on the overall measuring process.

The wide keyboard, with its 9 silicon rubber coated keys, clearly marked with function, allows a simple and intuitive use of the instrument.

X3M D is completely programmable, from either the keyboard or a PC remote connection (only for models with communication port). It is therefore the ideal solution for all the power measurement and management needs in the industrial environment.

The instrument is equipped with two optically insulated transistor driven outputs with capacity load of 27 Vdc 27 mA according to 43864 Din standard.

They can be used either as pulse output or as alarm and are fully programmable by the user on different parameters and with different pulse frequency and duration.

The factory setting is with one output is proportional to the active energy, while the other to the reactive energy and an output frequency of 1000 pulses per kWh (or kvarh) and 50 ms pulse time.

The pulses number is referred to the instrument end of range without the CT and VT scale factors.

6.2 Simplicity and versatility

Keyboard programming is extremely easy and allows setting of:

- Connection type (star and delta)
- Low Tension or Medium Tension
- Setting of CTs and VTs values (freely settable)
- Integration time (1-99 min.)
- RS485 features (speed, parity and data format)
- Alarm threshold for the Active Power.
- Analog output.
- Pulses
- and all other functions available

The sameFunctions can be programmed via PC

6.3 Total harmonic distortion Measurement (THD)

The instrument gives an evaluation of the energy quality by sampling the total harmonic distortion of the 3 voltages and 3 currents.

These functions are extremely useful to control the quality of the energy supplied by the Public Utility, because of the large number of distorting loads in industrial plants.

6.4 Energy Measurement

Energy is displayed on a 6 digit display with floating point.

The energy counters are stored on counters with minimum definition equal to 0,1 Wh and maximum counting equal to 99.999.999,9 kWh.

8 counters are available +Ea, -Ea, ++Er, -+Er, --Er, +-Es, -Es on 4 total quadrants and for each one of the 8 tariff ranger

6.5 Storage

The instrument stores the following data according to user programmable services

- Load curves. It stores on files, according to a pre-defined schedule, the content of one or more than one ModuBus registers (input registers and/or holding registers)
- System log. It includes the instrument history from the start with all the functioning altering operations.
- Configuration log. It records the configuration modifications
- Event log. It records the following events on file:
 - Power failure
 - Power voltage loss (power down).
 - Power voltage return (power up).
 - Interruption
 - Loss of one or more phase voltage (phase-neutral or phase-phase if star connected) below a programmable threshold value (voltage loss).
 - Return of one or more phase voltage above of a programmable threshold value (voltage return)
 - Over current
 - Overshoot of one or more line currents of the programmable threshold value (over current).
 - Instrument reset
- RMS value maximum and minimum (1 Sec)
- Definition of the calendar ranges: it includes the tariff structure.
- Tariff counters: It includes the following energy counters +Ea, -Ea, ++Er, -+Er, +-Er, --Er, +Es, -Es for the 4 quadrants and for each of the 8 tariff options.
- Peak values: contains the maximum or peak power values (averaged over the integration period) on 4 quadrants or each of the 8 tariff options

6.6 Calibration Led

A red led is located on the instrument front panel pulsing with a 1000 pulse/kWh (or kvarh) and 50 ms pulse duration. The pulses number is referred to the instrument end of range without the CT and VT scale factors.

6.7 Digital Outputs

The two outputs are (mostly) used as pulse output on active/reactive power or as output for the internal triggers. In other configurations, where the instruments is controlled – by a PC or PLC - through the RS485 port, the outputs can be used for signaling remote activation/deactivation.

6.8 Pulse Output

The two outputs, if in association with pulse, can be referred to one of the 8 power value available on a 4 quadrant system.

The output pulse can be freely programmed both on frequency and duration and referred to the instrument Full Scale or to the measuring cell (with CT and PT) Full Scale.

It is possible to program the output value either according to pulse number and pulse weight

The two outputs are factory programmed one proportional to the active energy while the other to the reactive energy, the output frequency is 1000 pulses per kWh (or kvarh) and 50 ms pulse time.

The pulses number is referred to the instrument Full Scale without the CT and TV scale factors.

6.9 Alarms

X3M D is triggered and programmed by switchboard and/or Holding registers with MODBUS protocol.

The advanced functions of the Energy Brain configuration software allow to customize each of the two alarms on any available parameter either as a minimum or max alarm. Two different thresholds of the same measurement can be programmed.

Minimum value and maximum value special alarms on voltage are available that can be applied on any of the three phases, one maximum value alarm on current that can be applied on any of the three phases and an unbalanced alarm on any of the three current phases.

A further flexibility in customization is provided by the possibility to program the alarm management through:

- Delay time (between 1 and 59 sec.) that is activation delay. Example: avoid alarms due to short signal peaks.
- Hysteresis, that is the cycle between the alarm activation value and the alarm deactivation value. It
 is an extremely useful function to avoid ringing and false triggering. Example: Current alarm set on
 100A Max with 5% Hysteresis. The alarm is activated at 100 A and is deactivated at 95 A. The two
 alarms can be associated singularly to:
- Output relays. In this case the output relays are activated by the exceeded threshold
- RS485 data line. The relays are disabled and the alarm consolidation are disabled and the alarm condition is available as information on information on RS485. data line.

6.10 Communication

The device can be connected to a PC through an optional RS485 or RS232 port using the MODBUS communication protocol (MODBUS, developed by AEG-MODICON, is a standard in the PLC industry and widely utilized by SCADA systems for industrial plants management).

Data read by the device can be read as the content of numeric registers, in the standard mantissa/exponent floating point IEEE format.

The communication port can be operated at any speed between 2400 bps through 38400 bps without wait states between 2 requests with a limitation on the number of registers equal to 124 registers (62 parameters)

When using the optional RS485 port, the connection uses a standard telephone pair without need of signal regeneration/amplification for distances up to 1,000 m. Up to 128 devices can be connected on the same network branch. Using line amplifiers, it is possible to connect up to 247 instruments or 1,000 m network segments.

6.11 Clock / Calendar

X3M D is equipped with a clock/calendar provided with a 15 years buffer battery.

It is updated when manufactured with the Europe/Rome time and time zone The clock/calendar is equipped with the time zone managing functions.

It manages the automatic change from Standard Time to Daylight Saving Time and vice versa

6.11.1 Clock Format

The following Times are programmed":

Coordinated Universal Time (UTC): previously known as GMT (Greenwich Mean Time): it is the universal time, shared by any earth location

Standard Time: it is the local time of a specific time zone, based on the sun cycles (known as Standard Time

Daylight Saving Time it is the local time of a specific time zone when an offset on standard time is valid (DST offset). The introduction of this offset allows to increase the natural light duration in the summer evenings.

Wall time: it is how we refer to the clock time in ach time zone. The Wall time is equal to Daylight Saving Time or to Standard Time according to weather an offset on sun cycle time is occurring or not.

The difference between Standard Time and UTC time is named GMT offset.

Summarizing:

GMT offset = UTC - Standard Time

Wall Time = Standard Time + DST offset = UTC + GMT offset + DST offset

The instrument RTC stores the following time information:

- Date/time
- UTC;
- It identifies the time zone it belongs to.

X3M, starting from the UTC time can autonomously calculate the local time (Wall Time) of any place on earth

The zone it belongs to is indicated to the instrument through a numeric index (time zone index) either on the display or on a MODBUS register.

6.12 Memory

Non volatile data memory without buffer battery, capable to store data for more than 15 years.

It is structured as a disk with file system and directory and it can be accessed via Modbus protocol.

6.12.1 Dimensions

2 Mbytes Flash Disk

2.088.960 bytes available space

Organized in 4096 allocation units from 510 bytes each.

As each file occupies at least an allocation unit, a maximum of 4096 files can coexist on disk

6.12.2 Memory Read/Write.

Disk access via Modbus functions.

"Write General File".

"Read General File".

The data on disk are organized in record files, as per ModBus standard

6.12.3 File Structure

Each file is individualized by a numeric index of 2 bytes (FILE NUMBER, from 0 to 65535).

It can contain max 10000 records, addressed from 0 to 9999.

Each record can be max 238 bytes.

6.12.4 Record Structure

All the records of the same file must have the same size and the same structure.

The only exception is represented by the 0 record, which can have different dimension and structure from the successive records (from 1 to 9999).

6.13 Average and peak Energy

While the X3M D was designed to measure energy consumption (the so called import mode), it can be configured to work in import/export mode. When in import mode, the device automatically compensates wiring errors on CTs (e.g. for current flow). On the other hand, when in import/export mode, all the energy, average and peak counters are open for measures in the four quadrants.

6.14 Tariff Time Bands

It is possible to store, inside the instrument, a calendar file which organizes the consume according to different tariff bands. The tariff scheme can present different values during the day and the day scheme can present different formats during the year.

It is possible to have a maximum of 8 tariffs with max 24 tariff changes a day.

Thanks to its internal clock, the instrument can divide the energy consumes on 8 different tariff counters (range) which are stored inside the data memory

The peak values are memorized in the same way (Max Demand) for each tariff on another memory file.

7 System Architecture

7.1 General Features

7.1.1 X3M D

Energy and Supply quality Analyzer

- Very accurate and stable measurement system thanks to the digital signal elaboration;
- Continuous sampling of the wave shape of voltages and currents;
- Offset automatic compensation of the measurement chain;
- Current inputs with automatic scale change;
- True-RMS measurements (up to the 31st harmonic);
- Class 1 on the Active Power in compliance with IEC EN 61036;
- Neutral current calculation;
- Working temperature -20/+60 °C.
- Clock/calendar provide 15 years back up battery with management of standard/daylight saving time (DST Daylight Saving Time) time zones
- Insertion on electric single phase networks and on balanced symmetrical three phase 3 wire networks
- Software upgrade on line
- Life Timer;
- LCD display with white white LED baclight;
- Calibration verification LED through optical devices;
- Easy to use, thanks to the 9 button keyboard with explicit function indication;
- Insertion on electric 3 phase unbalanced 3 or 4 wire networks, single phase networks and on balanced symmetrical three phase 3 or 4 wire networks
- To be used with low or high voltages (programmable relationship between VTs and CTs);
- Extended range power supply (85 ÷ 265 Vac, 100 ÷ 374 Vdc) separated by the measurement inputs;
- 2 slots for optional expansion modules:
 - RS-232 o RS-485 Communication port;
 - 4-20 mA Double analogue output;
 - Further devices for future applications;
- Galvanic insulation among all input and output ports;
- Firmware which can be upgraded to support new functions;
- 6 unit Din rail mounting;
- Compliant with all the international standards.
- Measurement of the total harmonic distortion (THD) of voltages and currents;
- Average and Max Demand powers (on 4 displays) with programmable integration time;
- Internal energy counters (on 4 displays).
- 2 digital outputs (DIN 43864) with programmable functions:
 - Pulse outputs for energy counting;
 - Event signaling (alarms);
 - Remote control of external devices.
- Data Memory
 - Dimensions
 - 2 Mbytes Flash disk.
 - 2.088.960 bytes available memory.
 - Organized in 4096 allocation units from 510 bytes each.
 - As each file occupies at least an allocation unit a maximum of 4096 files can coexist on disk
 - Reading.
 - Disk Access via Modbus functions.
 - "Write General File".
 - "Read General File".
 - The data on disk are organized in record files, according to ModBus standard.

- Files Structure

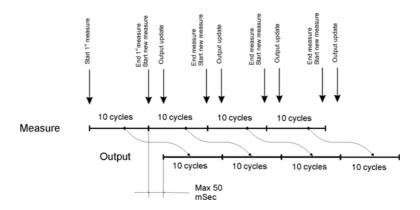
- Each file is identified by a numeric index of 2 bytes (FILE NUMBER, from 0 to 65535).
- It can store a maximum of 10000 records, addressed from 0 to 9999.
- Each record cannot be more than 238 bytes.

7.1.2 Options

7.1.2.1 RS485 Port

RS485 optically insulated interface module with programmable speed from 2400 bps to 38400 bps. It is connected to the instrument via a connector and then can be easily fixed at the back with screws. It can be network connected with other instruments up to 1000 m maximum distance and up to 128 instruments. For longer distances or more instruments, an amplifier is necessary.

7.1.2.2 RS232 Port


RS232 optically insulated interface module with programmable speed from 2400 bps to 38400 bps. It is connected to the instrument via a connector and then can be easily fixed at the back with screws.

7.1.2.3 2 x 4-20 mA Analog Output

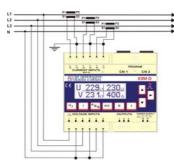
4-20 o 0-20 mA analogue double output, galvanically insulated with high precision and reliability.

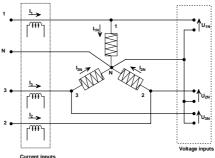
The output is the result of a conversion from digital to analogue with definition higher than 10 bit, maintaining the original measurement accuracy.

The two outputs can be linked to any measurement parameter with update every 200 ms on primary parameters.

For the average power the output update is every minute due to the parameter itself.

It can be set to a 0 value (4 or 0 mA) a positive or negative value of the selected parameter and to nevertheless set to 20 mA end of scale, a lower value than the instrument end of scale. The end of scale provides for an operation margin up to 24 mA.


If the parameter has a value different from the set ones, the output will be 0 mA.


Parameters and formulas

For each type of connection, the available readings as well as the formulas used for their calculation are

The redings not available will be displayed as **_ _ _** in place of the value.

8.1 **3P 4W** Three phase with 4 wire neutral

8.1.1 Available Reading:

Frequency:

1.1 Voltage frequency V_{1N} :

f

2 RMS amplitude:

- 2.1 Phase Voltages:
- 2.2 Average Phase Voltages:
- 2.3 Phase-phase Voltages:
- 2.4 Mean Phase-phase Voltage:
- 2.5 Phase Current:
- 2.6 Neutral Current:
- 2.7 Mean three phase Current:

- U_{1N} , U_{2N} , U_{3N}
- U_{12} , U_{23} , U_{31}
- U_{Λ}
- I_1, I_2, I_3
- I_N
- $I_{\scriptscriptstyle \Sigma}$

Total harmonic Distortion (in percentage):

3.1 Phase Voltages THD:

$$THD_{U_{1N}}$$
 , $THD_{U_{2N}}$, $THD_{U_{3N}}$

- 3.2 Mean 3 phase voltage THD:
- 3.3 Phase Current THD:
- 3.4 Mean 3 phase current THD:

- $THD_{U_{s}}$
- THD_{I_1} , THD_{I_2} , THD_{I_3}
- $THD_{I_{\Sigma}}$

Power (on the short period):

- 4.1 Phase Active Powers:
- 4.2 3 Phase Active Power:
- 4.3 Phase reactive Powers:
- 4.4 3 Phase Reactive Power:
- 4.5 Phase apparent Powers:

- P_1, P_2, P_3
- P_{Σ} Q_1, Q_2, Q_3
 - $Q_{\scriptscriptstyle \Sigma}$
- S_1, S_2, S_3

4.6 3 Phase Apparent Power:	$S_{\scriptscriptstyle \Sigma}$
5 Power Factor:5.1 Phase Power Factor:	λ_1 , λ_2 , λ_3
5.2 3 Phase Power Factor:	${oldsymbol{\lambda}}_{\Sigma}$
6 Energies: 6.1 Active Energy (import):	E_a^+
6.2 Active Energy (export):	E_a^-
6.3 Inductive reactive Energy with import Active Power:	$E_{rind}^{\scriptscriptstyle +}$
6.4 Capacitive reactive Energy with import Active Power:	$E^{\scriptscriptstyle +}_{rcap}$
6.5 Inductive reactive Energy with export Active Power:	E^{rind}
6.6 Capacitive reactive Energy with export Active Power:	E^{rcap}
6.7 Apparent Energy with import Active Power:	$E_s^{\scriptscriptstyle +}$
6.8 Apparent Energy with export Active Power:	E_s^-
7 Average Power integrated over the integration period "Sliding Average",	programmed
7.1 Average import Active Power:	P_{AVG}^+
7.2 Average export Active Power:	P_{AVG}^-
7.3 Average inductive reactive Power with import Active Power:	$Q_{ extit{AVG ind}}^+$
7.4 Average capacitive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVG cap}^{\scriptscriptstyle +}$
7.5 Average inductive reactive Power with export Active Power:	$Q_{ extit{AVG ind}}^-$
7.6 Average capacitive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVG cap}^-$
7.7 Average apparent Power with import Active Power:	$S_{AVG}^{\scriptscriptstyle +}$
7.8 Average apparent Power with export Active Power:	S_{AVG}^-
8 Maximum Demand:	
8.1 M.D. of import Active Power	$P_{M.D.}^+$
8.2 M.D. of export Active Power:	$P_{M.D.}^-$
8.3 M.D. of inductive reactive Power with import Active Power:	$Q_{{\scriptscriptstyle M.D.ind}}^{\scriptscriptstyle +}$
8.4 M.D. of capacitive reactive Power with import Active Power:	$Q_{\scriptscriptstyle M.D.cap}^{\scriptscriptstyle +}$
8.5 M.D. of inductive reactive Power with export Active Power:	$Q_{\scriptscriptstyle M.D.ind}^-$
8.6 M.D. of capacitive reactive Power with export Active Power:	$Q_{\scriptscriptstyle M.D.cap}^-$
8.7 M.D. of apparent Power with import Active Power:	$S_{M.D.}^+$
8.8 M.D. of apparent Power with export Active Power:	$S_{M.D.}^-$
9 Time: 9.1 Life Timer t	

8.1.2 Measurement Formulas:

Phase Voltages: U_{1N} , U_{2N} , U_{3N}

$$U_{1N} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{1N}^2(n)}; \qquad U_{2N} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{2N}^2(n)}; \qquad U_{3N} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{3N}^2(n)}$$

Phase-phase Voltages: $\boldsymbol{U}_{\text{12}}$, $\boldsymbol{U}_{\text{23}}$, $\boldsymbol{U}_{\text{31}}$

$$U_{12} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} [U_{1N}(n) - U_{2N}(n)]^2}; \quad U_{23} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} [U_{2N}(n) - U_{3N}(n)]^2}; \quad U_{31} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} [U_{3N}(n) - U_{1N}(n)]^2}$$

where:

 $U_{1N}(n)$, $U_{2N}(n)$, $U_{3N}(n)$ are the star voltage samples;

M is the number of samples taken over a period (64);

M

 $\underline{\text{Star Voltages THD}} \ THD_{U_{1N}} \ \text{,} THD_{U_{2N}} \ \text{,} THD_{U_{3N}} \ \text{in } \%$

$$THD_{U_{1N}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{1N}^2(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} U_{1N}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^2 + \left[\sum_{n=0}^{N-1} U_{1N}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^2 \right\}} - 1}$$

$$THD_{U_{2N}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{2N}^2(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} U_{2N}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^2 + \left[\sum_{n=0}^{N-1} U_{2N}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^2 \right\}}} - 1$$

$$THD_{U_{3N}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{2N}^2(n) \cos \left(\frac{2\pi n}{N} \right) \right]^2 + \left[\sum_{n=0}^{N-1} U_{3N}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^2 \right\}}} - 1$$

Line Currents (coincident with the phase currents): I_1, I_2, I_3

$$I_{1} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_{1}^{2}(n)}; \qquad I_{2} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_{2}^{2}(n)}; \qquad I_{3} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_{3}^{2}(n)}$$

 $I_1(n), I_2(n), I_3(n)$ are the samples of the line currents.

Neutral Current
$$I_N = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} [I_1(n) + I_2(n) + I_3(n)]^2}$$

 $\underline{ \text{Phase Currents THD}} \text{: } THD_{I_1} \text{ ,} THD_{I_2} \text{ ,} THD_{I_3}$

$$THD_{I_{1}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{1}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{1}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{1}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

$$THD_{I_{2}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{2}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{2}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{2}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1}$$

$$THD_{I_{3}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{3}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{3}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{3}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1}$$

Phase Active Powers: P_1, P_2, P_3 ;

$$P_{1} = \frac{1}{M} \sum_{n=0}^{M-1} U_{1N}(n) I_{1}(n); \qquad P_{2} = \frac{1}{M} \sum_{n=0}^{M-1} U_{2N}(n) I_{2}(n); \qquad P_{3} = \frac{1}{M} \sum_{n=0}^{M-1} U_{3N}(n) I_{3}(n)$$

Phase reactive Powers: Q_1, Q_2, Q_3

$$Q_{1} = \frac{1}{M} \sum_{n=0}^{M-1} U_{1N}(n+M/4) I_{1}(n);$$

$$Q_{2} = \frac{1}{M} \sum_{n=0}^{M-1} U_{2N}(n+M/4) I_{2}(n);$$

$$Q_{3} = \frac{1}{M} \sum_{n=0}^{M-1} U_{3N}(n+M/4) I_{3}(n)$$

$$\begin{array}{ll} \underline{\text{Phase apparent Powers:}} \ S_1, S_2, S_3 & S_1 = U_1 I_1 & S_2 = U_2 I_2 & S_3 = U_3 I_3 \\ \underline{\text{Phase Power Factors:}} \ \lambda_1, \lambda_2, \lambda_3 & \lambda_1 = \frac{P_1}{S_1} sign(Q_1) & \lambda_2 = \frac{P_2}{S_2} sign(Q_2) & \lambda_3 = \frac{P_3}{S_3} sign(Q_3) \\ \underline{\text{where sign}(A) is a small to A with two Q As A without Q} \end{array}$$

where sign(x) is equal to 1 with x > 0, to -1 with x < 0.

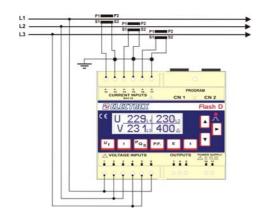
Average star Voltage
$$U_{\lambda}$$

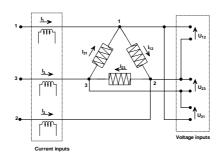
$$U_{\lambda} = \frac{U_{1N} + U_{2N} + U_{3N}}{3}$$
 Mean phase-phase Voltage U_{Δ}
$$U_{\Delta} = \frac{U_{12} + U_{23} + U_{31}}{3}$$

Average THD of the star voltages:
$$THD_{U_{\lambda}}$$

$$THD_{U_{\lambda}} = \frac{THD_{U_{1N}} + THD_{U_{2N}} + THD_{U_{3N}}}{3}$$

Three phase Current
$$I_{\Sigma}$$
 $I_{\Sigma} = \frac{S_{\Sigma}}{U_{\Delta}\sqrt{3}}$


Average THD of the phase currents:
$$THD_{I_{\Sigma}} = \frac{THD_{I_{1}} + THD_{I_{2}} + THD_{I_{3}}}{3}$$


Total Active Power:
$$P_{\Sigma}$$
 $P_{\Sigma} = P_1 + P_2 + P_3$ Total reactive Power: Q_{Σ} $Q_{\Sigma} = Q_1 + Q_2 + Q_3$ Total apparent Power: S_{Σ} $S_{\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2}$

Total apparent Power:
$$S_{\Sigma}$$
 $S_{\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2}$ 3 Phase Power Factor: λ_{Σ} $\lambda_{\Sigma} = \frac{P_{\Sigma}}{S_{\Sigma}} sign(Q_{\Sigma})$

where sign(x) is equal to 1 with x > 0, to -1 with x < 0.

8.2 3P 3W Three phase without neutral

8.2.1 Available Reading:

1 Frequency:

1.1 Voltage frequency V_{1N} :

f

2 RMS amplitude:

2.4 Mean three phase Current:

 U_{12} , U_{23} , U_{31} U_{Λ}

$$I_1, I_2, I_3$$

3 Total harmonic distortion (in percentage):

3.1 THD of the Phase to phase Voltages

3.2 Average THD of the Phase to phase Voltages

3.3 THD of the line currents:

3.4 Average THD of the line currents

 $\mathit{THD}_{U_{12}}$, $\mathit{THD}_{U_{23}}$, $\mathit{THD}_{U_{31}}$

 $THD_{U\Delta}$

 P_{Σ}

 THD_{I_1} THD_{I_2} THD_{I_3}

 $\mathit{THD}_{I_{\scriptscriptstyle \Sigma}}$

4 Power (on the short period):

4.1 3 Phase Active Power:

4.2 3 Phase Reactive Power:

4.3 3 Phase Apparent Power:

 $egin{array}{c} Q_\Sigma \ S_\Sigma \end{array}$

5 Power Factor:

5.1 3 Phase Power Factor:

 $\lambda_{_{\Sigma}}$

 E_a^-

 E_{rind}^+

6 Energies:

6.1 Active Energy (import):

 E_a^+

- 6.2 Active Energy (export):
- 6.3 Inductive reactive Energy with import Active Power:

L

6.4 Capacitive reactive Energy with import Active Power:	E_{rcap}^{+}
6.5 Inductive reactive Energy with export Active Power:	E^{rind}
6.6 Capacitive reactive Energy with export Active Power:	E^{rcap}
6.7 Apparent Energy with import Active Power:	E_s^+
6.8 Apparent Energy with export Active Power:	E_s^-
7 Average Power integrated over the pro "Sliding Average",:	
7.1 Import average Active Power:	P_{AVG}^+
7.2 Export average Active Power:	P_{AVG}^-
7.3 Average inductive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVGind}^{\scriptscriptstyle +}$
7.4 Average capacitive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVG cap}^+$
7.5 Average inductive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVGind}^-$
7.6 Average capacitive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVG cap}^{\scriptscriptstyle -}$
7.7 Average apparent Power with import Active Power:	S_{AVG}^{+}
7.8 Average apparent Power with export Active Power:	S_{AVG}^-
8 Maximum demand:	
8.1 M.D. of import Active Power:	$P_{M.D.}^+$
8.2 M.D. of export Active Power:	$P_{M.D.}^-$
8.3 M.D. of inductive reactive Power with import Active Power:	$Q_{{\scriptscriptstyle M}.{\scriptscriptstyle D.ind}}^+$
8.4 M.D. of capacitive reactive Power with import Active Power:	$Q_{{\scriptscriptstyle M},{\scriptscriptstyle D. cap}}^{\scriptscriptstyle +}$
8.5 M.D. of inductive reactive Power with export Active Power:	$Q_{\scriptscriptstyle M.D.ind}^-$
8.6 M.D. of capacitive reactive Power with export Active Power:	$Q^{\scriptscriptstyle -}_{\scriptscriptstyle M.D.cap}$
8.7 M.D. of apparent Power with import Active Power: $S_{M.D.}^+$	
8.8 M.D. of apparent Power with export Active Power:	$S_{M.D.}^-$
9 Time:	
9.1 Life Timer	t

8.2.2 Measurement Formulas:

Phase-phase Voltages: \boldsymbol{U}_{12} , \boldsymbol{U}_{23} , \boldsymbol{U}_{31}

$$U_{12} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{12}^{2}(n)}; \qquad U_{23} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{23}^{2}(n)}; \qquad U_{31} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{31}^{2}(n)}$$

 $U_{12}(n)$, $U_{23}(n)$, $U_{31}(n)$ are the Phase to phase Voltages samples. M is the number of samples taken over a period (64)

 $\underline{ \text{Phase to phase Voltages THD} } \ THD_{U_{12}} \ \text{,} THD_{U_{23}} \ \text{,} THD_{U_{31}} \ \text{in } \%$

$$THD_{U_{12}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{12}^2(n)}{\frac{2}{N} \left\{ \sum_{n=0}^{N-1} U_{12}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^2 + \left[\sum_{n=0}^{N-1} U_{12}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^2 \right\}} - 1}$$

$$THD_{U_{23}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{23}^2(n)}{\frac{2}{N} \left\{ \sum_{n=0}^{N-1} U_{23}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^2 + \left[\sum_{n=0}^{N-1} U_{23}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^2 \right\}} - 1}$$

$$THD_{U_{31}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{23}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^2 + \left[\sum_{n=0}^{N-1} U_{31}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^2 \right\}} - 1}$$

Phase Current: I_1, I_2, I_3

$$I_{1} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_{1}^{2}(n)}; \qquad I_{2} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_{2}^{2}(n)}; \qquad I_{3} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_{3}^{2}(n)}$$

 $I_1(n), I_2(n), I_3(n)$ are the line current samples.

 $\underline{ Phase \ Current \ THD}; \ \ THD_{I_1} \ , THD_{I_2} \ , THD_{I_3}$

$$THD_{I_{1}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{1}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{1}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{1}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1}$$

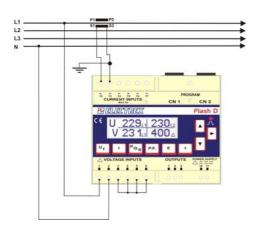
$$THD_{I_{2}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{2}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{2}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{2}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1}$$

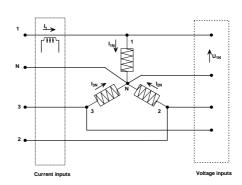
$$THD_{I_{3}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{3}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{3}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{3}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1}$$
 Mean phase-phase Voltage
$$U_{\Delta} \qquad U_{\Delta} = \frac{U_{12} + U_{23} + U_{31}}{3}$$

Average THD of the Phase to phase Voltages: $THD_{U_{\Lambda}}$ $THD_{U_{\Lambda}} = \frac{THD_{U_{12}} + THD_{U_{23}} + THD_{U_{31}}}{3}$

Three phase current: $I_{\Sigma} = \frac{S_{\Sigma}}{U_{\Delta}\sqrt{3}}$

Average THD of the phase Currents: $THD_{I_{\Sigma}} = \frac{THD_{I_{1}} + THD_{I_{2}} + THD_{I_{3}}}{3}$


Three phase Active Power: $P_{\Sigma} = \frac{1}{M} \left[\sum_{n=0}^{M-1} U_{12}(n) I_1(n) - \sum_{n=0}^{M-1} U_{23}(n) I_3(n) \right]$


Three phase reactive Power: Q_{Σ} $Q_{\Sigma} = \frac{1}{M} \left[\sum_{n=0}^{M-1} U_{12}(n+M/4) I_1(n) - \sum_{n=0}^{M-1} U_{23}(n+M/4) I_3(n) \right]$

Three phase apparent Power: S_{Σ} $S_{\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2}$

where sign(x) is equal to 1 with x > 0, to -1 with x < 0.

8.3 3P-b 4W **Balanced Three phase with neutral**

8.3.1 Available Reading:

2.2 Phase Current:

Frequency:

1.1 Voltage frequency V_{1N} : f

> 2 **RMS Amplitude:**

 $U_{_{1N}}$ 2.1 Star Voltage: I_1

Total harmonic Distortion (in percentage):

 $THD_{U_{1N}}$ 3.1 Star Voltage THD:

 THD_{I_1} 3.2 Phase Current THD:

Power (on the short period):

4.1 Phase Active Power: P_1 4.2 3 Phase Active Power: $P_{\scriptscriptstyle \Sigma}$ 4.3 Phase Reactive Power: Q_1

4.4 3 Phase Reactive Power: Q_{Σ}

4.5 Phase apparent Powers: S_1

4.6 3 Phase Apparent Power: S_{Σ}

> **Power Factor:** 5

5.1 Phase Power Factor: $\lambda_{_{1}}$ 5.2 Total Power Factor λ_{Σ}

Energies:

6.1 Active Energy (import): E_a^+

6.2 Active Energy (export): E_a^-

 E_{rind}^+ 6.3 Inductive reactive Energy with import Active Power:

 $E_{r\,cap}^+$ 6.4 Capacitive reactive Energy with import Active Power:

6.5 Inductive reactive Energy with export Active Power: E_{rind}^-			
6.6 Capacitive reactive Energy with export Active Power:	E^{rcap}		
6.7 Apparent Energy with import Active Power:	E_s^+		
6.8 Apparent Energy with export Active Power:	E_s^-		
7 Average Power integrated over the prog "Sliding Average",	grammed integration period		
7.1 Import average Active Power:	P_{AVG}^+		
7.2 Export average Active Power:	P_{AVG}^-		
7.3 Average inductive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVGind}^{\scriptscriptstyle +}$		
7.4 Average capacitive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVGcap}^{\scriptscriptstyle +}$		
7.5 Average inductive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVGind}^-$		
7.6 Average capacitive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVG cap}^-$		
7.7 Average apparent Power with import Active Power:	S_{AVG}^{+}		
7.8 Average apparent Power with export Active Power:	S_{AVG}^-		
8 Maximum Demand:			
8.1 M.D. of import Active Power:	$P_{M.D.}^+$		
8.2 M.D. of export Active Power:	$P_{M.D.}^-$		
8.3 M.D. of inductive reactive Power with import Active Power:	$Q_{{\scriptsize M.D.ind}}^{\scriptscriptstyle +}$		
8.4 M.D. of capacitive reactive Power with import Active Power:	$Q_{M.D.cap}^+$		
8.5 M.D. of inductive reactive Power with export Active Power:	$Q_{{\scriptscriptstyle M}{\scriptscriptstyle .D.ind}}^-$		
8.6 M.D. of capacitive reactive Power with export Active Power:	$Q_{M.D.cap}^-$		
8.7 M.D. of apparent Power with import Active Power:	$S_{M.D.}^{+}$		
8.8 M.D. of apparent Power with export Active Power:	$S_{M.D.}^-$		
9 Time:	<i>t</i>		

9.1 Life Timer

8.3.2 Measurements Formulas:

Phase Voltages:
$$U_{1N}$$

$$U_{1N} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{1N}^2(n)}$$

where:

 $U_{1N}(n)$ are the samples of the star voltages;

M is the number of samples on a period (64);

Star voltages THD $THD_{U_{1N}}$ in %

$$THD_{U_{1N}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{1N}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} U_{1N}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} U_{1N}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

Line Current (coincident with the phase current): $\boldsymbol{I_1}$

$$I_1 = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_1^2(n)}$$

 $I_1(n)$ are the samples of the line currents.

Phase current THD: THD_L

$$THD_{I_{1}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{1}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{1}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{1}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

Phase Active Power: P_1 ;

$$P_{1} = \frac{1}{M} \sum_{n=0}^{M-1} U_{1N}(n) I_{1}(n)$$

Phase reactive Power: Q_1

$$Q_{1} = \frac{1}{M} \sum_{n=0}^{M-1} U_{1N}(n+M/4) I_{1}(n)$$

Phase apparent Power: S_1

$$S_1 = U_1 I_1$$

Phase Power Factor: λ_1

$$\lambda_1 = \frac{P_1}{S_1} sign(Q_1)$$

where sign(x) is equal to 1 with x > 0, to -1 with x < 0.

Total Active Power:

$$P_{\Sigma}$$

$$P_{\Sigma} = P_{1} * 3$$

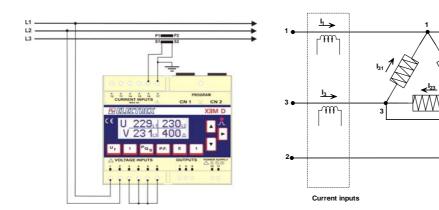
Total reactive Power: Q_{Σ}

$$Q_{\Sigma} = Q_{1} * 3$$

Total apparent Power: S_{Σ}

$$S_{\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2}$$

Total Power Factor: λ


$$\lambda_{\Sigma} = \lambda_{1}$$

where sign(x) is equal to 1 with x > 0, to -1 with x < 0.

8.4 3P-b 3W

Balanced three Phase without neutral 3 wires

Voltage inputs

8.4.1 Available Reading:

3.1 Phase to phase Voltages THD:

Frequency:

1.1 Voltage frequency V_{23} : f

2 RMS amplitude:

2.1 Phase-phase Voltages: U_{12}

2.2 Phase Current: I_3

3 Total harmonic distortion (in percentage):

 $THD_{U_{12}}$ THD_{I_3} 3.2 Phase Current THD:

Power (on short period):

 P_{Σ} 4.1 3 Phase Active Power:

4.2 Total reactive Power: Q_{Σ}

 $S_{\scriptscriptstyle \Sigma}$ 4.3 Total apparent Power:

5 **Power Factor:**

5.1 Total Power Factor: λ_{Σ}

Energies:

6.1 Active Energy (import): E_a^+

 E_a^- 6.2 Active Energy (export):

 E_{rind}^+ 6.3 Inductive reactive Energy with import Active Power:

 $E_{r\,cap}^+$ 6.4 Capacitive reactive Energy with import Active Power:

6.5 Inductive reactive Energy with export Active Power: E_{rind}^-

 $E_{r\,cap}^-$ 6.6 Capacitive reactive Energy with export Active Power:

 E_s^+ 6.7 Apparent Energy with import Active Power:

 E_s^- 6.8 Apparent Energy with export Active Power:

7 Average Power integrated over the programmed integration period "Sliding Average",

7.1 Import average Active Power:	P_{AVG}^{+}
7.2 Export average Active Power:	P_{AVG}^-
7.3 Average inductive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVGind}^{\scriptscriptstyle +}$
7.4 Average capacitive reactive Power with import Active Power:	$Q^{\scriptscriptstyle +}_{\scriptscriptstyle AVG cap}$
7.5 Average inductive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVGind}^{\scriptscriptstyle -}$
7.6 Average capacitive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVG cap}^-$
7.7 Average apparent Power with import Active Power:	S_{AVG}^{+}
7.8 Average apparent Power with export Active Power:	S_{AVG}^-
8 Maximum demand:	
8.1 M.D. of import Active Power:	$P_{M.D.}^+$
8.2 M.D. of export Active Power:	$P_{M.D.}^-$
8.3 M.D. of inductive reactive Power with import Active Power:	$Q_{{\scriptsize M.D.ind}}^{\scriptscriptstyle +}$
8.3 M.D. of inductive reactive Power with import Active Power:8.4 M.D. of capacitive reactive Power with import Active Power:	$Q^+_{M.D.ind}$ $Q^+_{M.D.cap}$
8.4 M.D. of capacitive reactive Power with import Active Power:	$Q^+_{M.D.cap}$
8.4 M.D. of capacitive reactive Power with import Active Power:8.5 M.D. of inductive reactive Power with export Active Power:	$Q_{M.D.cap}^+$ $Q_{M.D.ind}^-$
8.4 M.D. of capacitive reactive Power with import Active Power:8.5 M.D. of inductive reactive Power with export Active Power:8.6 M.D. of capacitive reactive Power with export Active Power:	$Q_{M.D.cap}^+$ $Q_{M.D.ind}^ Q_{M.D.cap}^-$

9 Time:

9.1 Life Timer

8.4.2 Measurement Formulas:

Phase-phase Voltages: U_{12}

$$U_{12} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{12}^2(n)}$$

Where: $U_{12}(n)$ are the samples of the chained values.

M is the number of sampling on a period (64)

Phase to phase Voltages THD $THD_{U_{23}}$ in %

$$THD_{U_{12}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{12}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} U_{12}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} U_{12}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

Line Currents : I_3

$$I_3 = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_3^2(n)}$$

 $I_1(n)$ are the samples of the line currents.

THD of the phase currents: THD_{I_2}

$$THD_{I_3} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_3^2(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_3(n) \cos\left(\frac{2\pi n}{N}\right) \right]^2 + \left[\sum_{n=0}^{N-1} I_3(n) \sin\left(\frac{2\pi n}{N}\right) \right]^2 \right\}} - 1$$

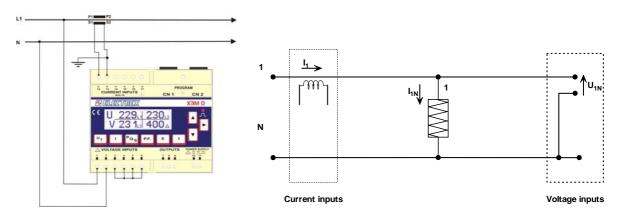
Three phase Active Power:

$$P_{\Sigma} = \frac{1}{M} \left[\sum_{n=0}^{M-1} U_{23} (n + M/4) I_1(n) \right] \sqrt{3}$$

Three phase reactive Power: $Q_{\scriptscriptstyle \Sigma}$

$$Q_{\Sigma} = \frac{1}{M} \left[\sum_{n=0}^{M-1} U_{23}(n) I_{1}(n) \right] \sqrt{3}$$

Three phase apparent Power: $S_{\scriptscriptstyle \Sigma}$


$$S_{\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2}$$

Three phase Power Factor: λ_{Σ}

$$\lambda_{\Sigma} = \frac{P_{\Sigma}}{S_{\Sigma}} sign(Q_{\Sigma})$$

where sign(x) is equal to 1 with x > 0, to -1 with x < 0.

8.5 1P (2W) Single phase

8.5.1 Available Reading:

1 Frequency: 1.1 Voltage Frequency V_{1N} :	f	
•••	J	
2 RMS Amplitude: 2.1 Voltage:	$U_{\scriptscriptstyle 1N}$	
2.2 Phase Current:	I_1	
3 Total harmonic Distortion (in percentage):		
3.1 Voltage THD:	$\mathit{THD}_{U_{1N}}$	
3.2 Phase Current THD:	THD_{I_1}	
4 Power (on short period):		
4.1 Active Power:	P_1	
4.2 Reactive Power:	Q_1	
4.3 Apparent Power:	S_1	
5 Power Factor:		
5.1 Power Factor :	$\lambda_{_1}$	
6 Energies:		
6.1 Active Energy (import):	E_a^+	
6.2 Active Energy (export):	E_a^-	
6.3 Inductive reactive Energy with import Active Power:	$E_{rind}^{\scriptscriptstyle +}$	
6.4 Capacitive reactive Energy with import Active Power:	$E_{rcap}^{\scriptscriptstyle +}$	
6.5 Inductive reactive Energy with export Active Power:	E^{rind}	
6.6 Capacitive reactive Energy with export Active Power:	E^{rcap}	
6.7 Apparent Energy with import Active Power:	E_s^+	
6.8 Apparent Energy with export Active Power: E_s^-		

7 Average Power integrated over the programmed integration period "Sliding Average",

 P_{AVG}^+ 7.1 Import average Active Power: P_{AVG}^- 7.2 Export average Active Power: $Q_{AVG\,ind}^+$ 7.3 Average inductive reactive Power with import Active Power: $Q_{AVG\,can}^+$ 7.4 Average capacitive reactive Power with import Active Power: 7.5 Average inductive reactive Power with export Active Power: $Q_{AVG\,ind}^ Q_{AVG\,cap}^{-}$ 7.6 Average capacitive reactive Power with export Active Power: S_{AVG}^+ 7.7 Average apparent Power with import Active Power: 7.8 Average apparent Power with export Active Power: S_{AVG}^{-}

8 Maximum Demand:

 $P_{M.D.}^+$ 8.1 M.D. of import Active Power: $P_{M.D.}^-$ 8.2 M.D. of export Active Power: $Q_{M \ D \ ind}^+$ 8.3 M.D. of inductive reactive Power with import Active Power: $Q_{M.D.cap}^+$ 8.4 M.D. of capacitive reactive Power with import Active Power: $Q_{M.D.ind}^-$ 8.5 M.D. of inductive reactive Power with export Active Power: $Q_{M,D,cap}^-$ 8.6 M.D. of capacitive reactive Power with export Active Power: S_{MD}^+ 8.7 M.D. of apparent Power with import Active Power: S_{MD}^- 8.8 M.D. of apparent Power with export Active Power:

9 Time:

9.1 Life Timer t

8.5.2 Measurement Formulas:

Voltage:
$$U_{1N} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{1N}^2(n)}$$

 $U_{1N}(n)$ are the samples of the star voltages;

M is the number of samples on a period (64);

Star voltages THD $THD_{U_{1N}}$ in %

$$THD_{U_{1N}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{1N}^2(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} U_{1N}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^2 + \left[\sum_{n=0}^{N-1} U_{1N}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^2 \right\}} - 1}$$
Phase Current:
$$I_1 = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_1^2(n)}$$

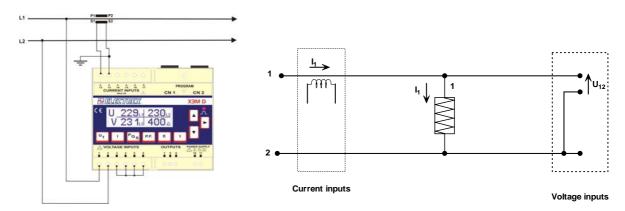
Where: $I_1(n)$ are the samples of the line currents.

Phase current THD: THD_{I_1}

Phase Current: I₁

$$THD_{I_{1}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{1}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{1}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{1}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

 $P_{1} = \frac{1}{M} \sum_{n=0}^{M-1} U_{1N}(n) I_{1}(n)$ Phase Active Powers: P₁


 $Q_{1} = \frac{1}{M} \sum_{n=0}^{M-1} U_{1N}(n+M/4) I_{1}(n)$ Phase reactive Powers : Q_1

Phase apparent Powers: S_1 $S_1 = U_1 I_1$

 $\lambda_1 = \frac{P_1}{S_1} sign(Q_1)$ Phase Power Factors: λ_1

where sign(x) is equal to 1 with x > 0, to -1 with x < 0.

8.6 2P (2W) Double phase

8.6.1 Available Reading:

1 1.1 Voltage frequency	Frequency:	f	
	RMS amplitude:	J	
2.1 Voltage:	itimo amplitude.	U_{12}	
2.2 Phase Current:		I_1	
3	Total harmonic distortion (in percentage):		
3.1 Voltage THD:	(1 0)	$THD_{U_{12}}$	
3.2 Phase Current TH	D:	THD_{I_1}	
4	Power (on short period):		
4.1 Active Power:		P_{Σ}	
4.2 Reactive Power:		${m Q}_{\Sigma}$	
4.3 Apparent Power:		S_{Σ}	
5	Power Factor:		
5.1 Power Factor:		λ_{Σ}	
6	Energies:		
6.1 Active	e Energy (import):	E_a^+	-
6.2 Active Energy (exp	port):	E_a^-	
6.3 Inductive reactive	Energy with import Active Power:	E_{rind}^{+}	
6.4 Capacitive reactive	e Energy with import Active Power:	E_{rcap}^+	
6.5 Inductive reactive	Energy with export Active Power:	E_{rind}^-	
6.6 Capacitive reactive	e Energy with export Active Power:	E_{rcap}^-	
6.7 Apparent Energy v	with import Active Power:	E_s^+	

 E_s^-

t

7 Average Power taken on a time interval (sliding window) of programmable amplitude:

7.1 Import average Active Power: P_{AVG}^+

7.2 Export average Active Power: P_{AVG}^-

7.3 Average inductive reactive Power with import Active Power: $Q_{{\scriptscriptstyle AVG\,ind}}^{\scriptscriptstyle +}$

7.4 Average capacitive reactive Power with import Active Power: $Q_{\scriptscriptstyle AVG\,cap}^{\scriptscriptstyle +}$

7.5 Average inductive reactive Power with export Active Power: Q_{AVGind}^{-}

7.6 Average capacitive reactive Power with export Active Power: $Q_{AVG\,cap}^-$

7.7 Average apparent Power with import Active Power: S_{AVG}^+

7.8 Average apparent Power with export Active Power: S_{AVG}^{-}

8 Maximum Demand:

8.1 M.D. of import Active Power: $P_{M.D.}^+$

8.2 M.D. of export Active Power: $P_{M.D.}^-$

8.3 M.D. of inductive reactive Power with import Active Power: $Q_{{\scriptscriptstyle M.D.ind}}^{\scriptscriptstyle +}$

8.4 M.D. of capacitive reactive Power with import Active Power: $Q_{M.D.\,cap}^+$

8.5 M.D. of inductive reactive Power with export Active Power: $Q_{\scriptscriptstyle M.D.ind}^-$

8.6 M.D. of capacitive reactive Power with export Active Power: $Q_{M.D.\,cap}^-$

8.7 M.D. of apparent Power with import Active Power: $S_{M.D.}^+$

8.8 M.D. of apparent Power with export Active Power: $S_{M.D.}^-$

9 Time:

9.1 Life Timer

8.6.2 Measurements Formulas:

Voltage: U_{12}

$$U_{12} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{12}^{2}(n)}$$

 $U_{12}(n)$ are the samples of the star voltages;

M is the number of samples taken on a period (64);

Star voltage THD $THD_{U_{12}}$ in %

$$THD_{U_{12}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{12}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} U_{12}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} U_{12}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

Phase Current: I₁

$$I_1 = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_1^2(n)}$$

 $I_1(n)$ are the samples of the line current.

Phase current THD: THD_{I_1}

$$THD_{I_{1}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{1}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{1}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{1}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

Active Power: P_{Σ}

$$P_{\Sigma} = \frac{1}{M} \sum_{n=0}^{M-1} U_{12}(n) I_{1}(n)$$

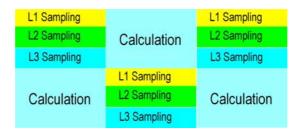
Reactive Power: Q_{Σ}

$$Q_{\Sigma} = \frac{1}{M} \sum_{n=0}^{M-1} U_{12} (n + M/4) I_1(n)$$

Phase apparent Power: S_{Σ}

$$S_{\Sigma} = U_{12}I_1$$

Phase Power Factor: λ_{Σ}


$$\lambda_{\Sigma} = \frac{P_1}{S_1} sign(Q_1)$$

where sign(x) is equal to 1 with x > 0, to -1 with x < 0.

8.6.3 Sampling:

The signals to be measured are sampled with a sampling frequency f_c equal to 64 times the network frequency f: shortly, the number of samples per wave is fixed at 64 even with frequency variation.

The sampling is continuous on all waveform. Every 10 wave the samples are passed to the calculation part and the sampling restart for the next 10 waves.

8.6.4 Grid frequency Measurement:

The minimum measurable frequency is about 38 Hz.

The A/D converter is stopped out of the range $45 \div 65$ Hz.

The frequency measurement is taken on phase L1 voltage.

The instrument can measure the fundamental frequency even in presence of very distorted waveforms and/or very low signal (few Volt).

8.7 Average values and energy Calculation.

8.7.1 Energy counting

X3M D is equipped with 8 "non volatile" energy counters which can count up to a maximum of 99999999.9 kWh (either kvarh or kVAh) with a resolution equal to 0.1 kWh (either kvarh or kVAh). The value of these counters can be read either by communication port or display. When the highest value 99999999.9 is reached, the counting starts again from zero (roll-over).

8.7.2 Average Powers / maximum demand (m/Max)

X3M D has a sliding window integrator which computes the average value of each of the 8 power measurements on an integration interval that is programmable in the range of 1 through 60 minutes in one minute steps.

The integration interval slides on the time axis in one minute intervals (when all the values of the measurements are updated). The settings of the integration intervals are not memorized when the instrument is turned off. While the duration of the integration interval may differ from the HOLD period, the two intervals are both aligned on the minute boundary. A command can be sent on the communication port to synchronize the HOLD period (and therefore of the minute boundary of the integration interval) with an external clock. The maximal value of each of the average power measurements is memorized in a non-volatile register (maximum demand, MD).

Both the average and maximum demand values are available through the display and the communication port. A command can be sent (either from the keyboard or the communication port) to reset the maximum demand values to zero. Another command resets the average power values: it resets the measurements taken during the last integration interval, but not the measurements taken in the last minute (the step with which the integration window slides). This preserves the synchronization of the integration interval and of the HOLD interval on the minute boundary.

9 MODBUS Protocol

9.1 Foreword:

The instrument modbus protocol is implemented according to the document "MODBUS Application Protocol Specification V1.1", available in www.modbus.org.

The following "Public functions" are implemented:

- (0x01) Read Coils
- (0x02) Read Discrete Inputs
- (0x03) Read Holding Registers
- (0x04) Read Input Registers
- (0x05) Write Single Coil
- (0x06) Write Single Register
- (0x07) Read Exception Status
- (0x08) Diagnostics
- (0x0F) Write Multiple Coils
- (0x10) Write Multiple Registers
- (0x11) Report Slave ID

Regarding the "Diagnostics" function, the following "Sub-functions" are implemented:

- (0x0000) Return Query Data
- (0x0001) Restart Communications Option
- (0x0004) Force Listen Only Mode

The only implemented function "User Defined" is marked "Change Slave Address" (function code 0x42).

Through two coils named SWAP BYTES and SWAP WORDS, it is possible to modify the memory area organization where the modbus registers mapping are. The configuration [SWAP BYTES = FALSE, SWAP WORDS = FALSE] correspond to a "Big-Endian" type organization (Motorola like): the most significant data byte whose size is bigger than byte is allocated at the lower address.

The order of the bigger than byte data transmitted on the serial line depend on the memory organization. In the "Big-Endian" organization type, the most significant byte is the one transmitted first (standard modbus).

Vice versa, the configuration [SWAP BYTES = TRUE, SWAP WORDS = TRUE] corresponds to an "INTEL like" memory organization (the most significant byte at the higher address, that is less significant byte transmitted first on the serial line).

Note: In the released version, not all the listed commands are available, check in the following pages for availability.

The default configuration is "Big-Endian" (Motorola like) as the modbus standard specify and not "Little-Endian" as the previous instruments.

9.2 "Device dependent" Functions

9.2.1 (0x11) Slave ID Report

	(0x11) Report Slave ID		
Byte	Description		Value
0	address		
1	function code		0x11
2	byte count		0x1F
3	slave ID		
4	run indicator status		0xFF
5	Application version major		
6	Application version minor		
7	Loader version major		
8	Loader version minor		
9		MSB	
10	Serial number		
11	Serial Humber		
12		LSB	
13	byte/word swap		OOO OOO - Swap bytes:
14	h., dala., (ma)	MSB	,,
15	tx delay (ms)	LSB	
16	N coils	MSB	
17	IN COIIS	LSB	
18	N disercte inputs (input status)	MSB	
19	N discrete inputs (input status)	LSB	
20	N holding registers	MSB	
21	14 Holding registers	LSB	
22	N input registers	MSB	
23	14 input registers	LSB	
24	CN1 option ID		0x00 = NONE
25	CN2 option ID		0x0D = DONGLE 0x0E = RS485 0x0F = RS232 0xFF = ERROR
26	· · · · · · · · · · · · · · · · · · ·	MSB	
27	A 11 11 1		
28	Application checksum		
29		LSB	
30		MSB	
31			
32	Loader Checksum		
33		LSB	
34	000		
35	CRC		

9.2.2 (0x07) Exception Status Read Not available.

9.3 "User defined" Functions

9.3.1 (0x42) Slave Address Change

The instruments accepts query with function code 0x42 (change slave address) only of "Broadcast" type (address 0). Consequently, there is no answer.

	Change Slave Address	Query	
Byte	Description		Value
0	Broadcast Address		0x00
1	Function Code		0x42
2		MSB	
3	Serial Number		
4	Seriai Nullibei		
5		LSB	
6	New Slave Address		
7	CRC		
8	CRC		

9.4 Register Mapping

9.4.1 Holding registers
Registers from address 0 to 7 are compatible with the registers of the old instrument, in order to assure the backwards compatibility. The one described are the ones of the KILO (T).

Registers from address 70 to 79 specific for X3M.
Registers from address 8 to 69 and from 132 to 139 are reserved for future expansions.

			Holding Registers	
Addr.	Туре	Description	Range [Unit] or Bitmap	Notes
0	Integer Word	CT Ratio	1-9999 [A/A]	
1	Integer Word	VT Ratio	1-9999 [V/V]	
2	Integer Word	AVG Integration Time	1-60 [min]	
3		NOT USED		Return undefined valued, if read. Written values will be ignored.
4		NOT USED		Return undefined valued, if read. Written values will be ignored.
5		NOT USED		Return undefined valued, if read. Written values will be ignored.
6		NOT USED		Return undefined valued, if read. Written values will be ignored.
7	Integer Word	Digital Outputs Watchdog	0-65535 [min]	0 = Watchdog disabled
8 : 69		RESERVED		Return undefined valued, if read. Don't write in this area.
70	Bitmapped Word	Words/Bytes swap flags	OOOO OOO OOOO OOO Swap bytes: 0 = Standard; 1 = Swapped OOOO OOOO OOOO Swap words: 0 = Standard; 1 = Swapped OOOO OOOO OOOO Swap doublewords: 0 = Standard; 1 = Swapped OOOO OOOO OOOO OOOO Swap words in float values: 0 = Standard; 1 = Swapped OOOO OOOO OOOO OOOOO OOOOO OOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Standard means Motorola like and Swapped means Intel like. The same bit combination must be written in both low and high part of register. In this manner the "byte swap" setting is meaningless for this register.
71	Integer Word	Tx delay time	0-100 [s/100]	

			Holding Registers	
Addr.	Type	Description	Range [Unit] or Bitmap	Notes
72	Bitmapped Word	Network type	○○○ ○○○ ○○○ Network type: 0 = 4 wires (Star); 1 = 3 wires (Delta) ○○○ ○○○○ ○○○○ Import/Export: 0 = Export disabled (2 quadrants); 1 = Export enabled (4 quadrants) ○○○○ ○○○○ Not Allocated	
73	Integer Word	CT Primary	1-10000 [A]	
74	Integer Word	CT Secondary	1 or 5 [A]	
75 76	Integer (4 bytes)	VT Primary	1-400000 [V]	
77	Integer Word	VT Secondary	1-999 [V]	
78	Integer Word	AVG/MD powers integration time	1-60 [min]	
79	Integer Word	Counters hold time	1-60 [min]	
80	Integer Word	Analog out 1 - Quantity index	⊙⊙⊙⊙ ⊙⊙⊙⊙ ⊙⊙⊙ Main Index: (see tables on next paragraph) ○○○○ ⊙⊙⊙⊙ ⊙⊙⊙⊙ Sub Index: (see tables on next paragraph)	Accessing this register cause an exception response if 4-20mA option is not present.
81	Integer Word	Analog out 1 - Mode		Accessing this register cause an exception response if 4-20mA option is not present.
82 83	Float IEEE754	Analog out 1 - Scale begin value		Accessing this register cause an exception response if 4-20mA option is not present.
84 85	Float IEEE754	Analog out 1 - Scale end value		Accessing this register cause an exception response if 4-20mA option is not present.
86	Integer Word	Analog out 2 - Quantity index	⊙⊙⊙⊙ ⊙⊙⊙⊙ ⊙⊙⊙○ Main Index: (see tables on next paragraph) ○○○○ ○○○○ ⊙⊙⊙⊙ Sub Index: (see tables on next paragraph)	Accessing this register cause an exception response if 4-20mA option is not present.
87	Integer Word	Analog out 2 - Mode		Accessing this register cause an exception response if 4-20mA option is not present.
88 89	Float IEEE754	Analog out 2 - Scale begin value		Accessing this register cause an exception response if 4-20mA option is not present.
90 91	Float IEEE754	Analog out 2 - Scale end value		Accessing this register cause an exception response if 4-20mA option is not present.

			Holding Registers	
Addr.	Туре	Description	Range [Unit] or Bitmap	Notes
92	Bitmapped Word	Digital out 1 - Configuration	OOO	
93	Bitmapped Word	Digital out 2 - Configuration	OOO OOO OOO OO⊙ Mode: 00 = Pulse; 01 = Alarm; 10 = Remote; 11 = Not allowed OOO OOO OOO O⊙O - Polarity: 0 = Normally opened; 1 = Normally closed ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙	
94	Integer Word	Digital Outputs Watchdog	0-65535 [min]	0 = Watchdog disabled
95	Integer Word	Alarm 1 - Quantity index	●●●● ●●● ○○○ ○○○ Main Index: (see tables on next paragraph) ○○○ ○○○ ●●● ●●● Sub Index: (see tables on next paragraph)	
96	Bitmapped Word	Alarm 1 - Mode	OOO OOO OOO OO⊙ Alarm coil driving mode: 00 ≡ Normal 01 ≡ Pulsed 10 ≡ Not allowed 11 ≡ Not allowed OOO OOO OOO O⊙OO Alarm type: 0 ≡ Min; 1≡ Max ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙ Not Allocated	
97	Float IEEE754	Alarm 1 - Threshold		
99	Integer Word	Alarm 1 - Histeresys	0-99 [%]	
100	Integer Word	Alarm 1 - Latency	1-99 [s]	
101	Integer Word	Alarm 2 - Quantity index	●●●● ●●●● ○○○○ Main Index: (see tables on next paragraph) ○○○○ ○○○○ ●●●● Sub Index: (see tables on next paragraph)	

			Holding Registers	
Addr.	Type	Description	Range [Unit] or Bitmap	Notes
102	Bitmapped Word	Alarm 2 - Mode	OOO OOO OOO OO⊙ Alarm coil driving mode: 00 ≡ Normal 01 ≡ Pulsed 10 ≡ Not allowed 11 ≡ Not allowed OOO OOO OOO O⊙O Alarm type: 0 ≡ Min; 1≡ Max ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙ ⊙⊙○ Not Allocated	
103	Float IEEE754	Alarm 2 - Threshold		
105	Integer Word	Alarm 2 - Histeresys	0-99 [%]	
106	Integer Word	Alarm 2 - Latency	1-99 [s]	
107 : 118		RESERVED		Return undefined valued, if read. Don't write in this area.
119	Bitmapped Word	Network type (extended)	OOO OOO OOO O⊙⊙ O⊙⊙ Network type: 0-5	
120	Bitmapped Word	Pulse Out 1 - Quantity selection	Measurement scaling:	
121	Integer Word	Pulse Out 1 - Pulse weight / Pulse Duration	⊙⊙⊙⊙ ⊙⊙⊙⊙ ⊙⊙⊙ Pulse Weight: 0-7 (weight = 10^ (n-1) Wh) ○○○○ ⊙⊙⊙⊙ ⊙⊙⊙⊙ Pulse Width: 5-90 (mS * 10)	

			Holding Registers	
Addr.	Туре	Description	Range [Unit] or Bitmap	Notes
122	Bitmapped Word	Pulse Out 2 - Quantity selection	Measurement scaling: 0=scaled to signal at primary side of CT/VT; 1=scaled to signal at secondary side of CT/VT; 0○○ 0○○ 0○○ 0○○ 0○○ Measurement selection: 0-7 0=P+, 1=P-, 2=Qind+, 3=Qcap+, 4=Qind-, 5=Qcap-, 6=S+, 7=S- 0○○ 0○○ 0○○ ○○○ ○○○ Not Allocated	
123	Integer Word	Pulse Out 2 - Pulse weight / Pulse Duration	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
124 : 127	RESERVED		Return undefined valued, if read. Don't write in this area.	RESERVED
128	Bitmapped Word	Digital out 1 - Configuration	OOOO OOOO OO⊙⊙ Mode: 00 = Pulse; 01 = Alarm; 10 = Remote; 11 = Tariff OOO OOOO O⊙OO Polarity: 0 = Normally opened; 1 = Normally closed ⊙⊙⊙⊙ ⊙⊙⊙⊙ ⊙⊙⊙⊙ Not Allocated 1 = Normally closed	
129	Bitmapped Word	Digital out 2 - Configuration	OOO OOO OOO OO⊙ Mode: 00 = Pulse; 01 = Alarm; 10 = Remote; 11 = Tariff OOO OOO OOO O⊙OO Polarity: 0 = Normally opened; ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙ ⊙○○○ Not Allocated	
130 139		RESERVED		Return undefined valued, if read. Don't write in this area.

			Holding Registers	
Addr.	Туре	Description	Range [Unit] or Bitmap	Notes
140 : 155	Byte Array ASCIIZ String	Active Timezone Name		This group of registers is updated on each read access to the first register. Read queries not including the first address, will give not updated values. Write queries involving at least one register of these, initiate a search in the timezone names table. On success, the clock will be adjusted according to the rules of the specified timezone. On fail, the instrument answers with an exception response of type 04.
156	Integer Word	Active Timezone Index	0-n	See Updated Timezones Table
157 158	Bitmapped (4 bytes)	Wall Time: Day, Month, Year, Century	●●●●●●●● ○○○○○○○ ○○○○○○○ ○○○○○○○ Bits 31 + 24: Century ○○○○○○○○ ●●●●●●● ○○○○○○○ ○○○○○○○ Bits 23 + 16: Year ○○○○○○○ ○○○○○○○ ●●●●●●● ○○○○○○○ Bits 15 + 8: Month ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Only date values in the range of 1/1/2004 and 31/12/2099 will be accepted. If an invalid combination is settled for Century, Year, Month and Day fields, the instrument answers with an exception response of type 04. These registers must be written within the same modbus query. The instrument answers with an exception response of type 04, to those write query involving only one of these registers.
159 160	Bitmapped (4 bytes)	Wall Time: Seconds, Minutes, Hours, DST flag	0000000 0000000 0000000 0000000 Bits 31 + 25: Unused 0000000 0000000 0000000 0000000 0000000 0000000 0000000 Bit 24: DST flag 0000000 0000000 0000000 Bits 23 + 16: Hours 0000000 0000000 0000000 0000000 0000000 0000000 0000000 Bits 15 + 8: Minutes 00000000 0000000 0000000 Bits 7 + 0: Seconds	DST flag = 1 means Daylight Saving Time in use. The DST flag's value will be ignored if written date/ time values are not compatible with it. If an invalid combination is settled for Hours, Minutes and Seconds fields, the instrument answers with an exception response of type 04. These two registers must be written within the same modbus query. The instrument answers with an exception response of type 04 to those write query involving only one of these registers.

			Holding Registers	
Addr.	Туре	Description	Range [Unit] or Bitmap	Notes
161 162	Integer (4 bytes)	Universal Time as UNIX Timestamp Format		Number of elapsed seconds since Unix Epoch Time (January 1, 1970 00.00.00) not including neither leap seconds nor timezone offsets. Only date values in the range of 1/1/2004 and 31/12/2099 will be accepted, otherwise the instrument answers with an exception response of type 04. These two registers must be written within the same modbus query.
163	Integer Word	GMT offset		Minutes west from GMT. UTC Time + (GMT offset * 60) + (DST offset * 60) = Local Time (Wall Clock Time) in Unix Time Stamp format. This is a read only register.
164	Integer Word	DST offset		Minutes offset from Standard Time during Daylight Saving Time. UTC Time + (GMT offset * 60) + (DST offset * 60) = Local Time (Wall Clock Time) in Unix Time Stamp format. This is a read only register.
165	Bitmapped Word	DST flag	OOOOOOO OOOOOOO Bit 0: DST flag ⊙⊙⊙⊙⊙⊙⊙ ⊙⊙⊙⊙⊙⊙⊙ Bits 15 ÷ 1: Non usati	DST flag = 1 means Daylight Saving Time in use. The DST flag's value will be ignored if not compatible with the value specified in the following two. This register with the following two, must be written within the same modbus query.
166 167	Integer (4 bytes)	Wall Time as UNIX Timestamp Format		Number of elapsed seconds since Unix Epoch Time (January 1, 1970 00.00.00) plus <i>GMT offset</i> and <i>DST offset</i> . Leap seconds are not included. Only date values in the range of 1/1/2004 and 31/12/2099 will be accepted. If values outside out of range value is settled, the instrument raises an exception response of type 04. These two registers with the previous one, must be written within the same modbus query.

	Holding Registers												
Addr.	Type	Description	Range [Unit] or Bitmap	Notes									
168 169	Integer (4 bytes)	Time of Next Changeover (Daylight Saving Time to Standard Time or viceversa) as UNIX Timestamp Format		Unix Time Stamp of next changeover from Standard Time to Daylight Saving Time or viceversa									

9.4.2 Parameter selection tables

The following tables allow the selection of the parameters to be associated to the alarms and to analog outputs. The Main index and the <u>Sub index</u> have to be specified in binary format (HEX).

All cells identified with are available only in Import/Export configuration.

											3Ph	1-4W								
												Sub	Index							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	OFF	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	1	×	$U_{{\scriptscriptstyle L\!N}}$	$U_{{\scriptscriptstyle L\!L}}$	×	×	$U_{_{1N}}$	${U}_{\scriptscriptstyle 2N}$	$U_{_{3N}}$	U_{12}	U_{23}	U_{31}	×	×	×	×	×	×	$U_{1N \div 3N}$	$U_{12 \div 31}$
	2	f	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Index	3	×	×	×	I_N	$I_{\scriptscriptstyle \Sigma}$	I_1	I_2	I_3	×	×	×	×	×	×	×	×	×	$I_{1 \div 3}$	×
2	4	×	×	×	×	$P_{\scriptscriptstyle \Sigma}$	P_1	P_2	P_3	×	×	×	$P_{IMP,vc}$	P_{EXPc}	×	×	×	×	×	×
		×	×	×	×	$Q_{\scriptscriptstyle \Sigma}$	Q_1	Q_2	Q_3	×	×	×	×	×	$Q_{L,IMP,vc}$	$Q_{CIMP,vc}$	$Q_{L,EXP,rec}$	$Q_{CEXP,uc}$	×	×
Z	6	×	×	×	×	$S_{\scriptscriptstyle \Sigma}$	S_1	S_2	S_3	×	×	×	$S_{IMP,vc}$	$S_{EXP,uc}$	×	×	×	×	×	×
	7	×	×	×	×	PF_{Σ}	PF_1	PF_2	PF_3	×	×	×	×	×	×	×	×	×	×	×
	8	×	×	×	×	×	$THD_{U,}$	$THD_{U_{\alpha \alpha}}$	$THD_{U_{2N}}$	×	×	×	×	×	×	×	×	×	$THD_{U_{1,y_{1},y_{2},y_{3}}}$	$THD_{U_{12,22}}$
	9	×	×	×	×	×	$THD_{I_{i}}$	THD_{I_2}	THD_{I_2}	×	×	×	×	×	×	×	×	×	$THD_{I_{1}}$	×

											3Ph	1-3W								
												Sub Ind	dex							
		0	1	1 2 3 4		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	OFF	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	1	×	×	$U_{{\scriptscriptstyle I\!L}}$	×	×	×	×	×	U_{12}	U_{23}	U_{31}	×	×	×	×	×	×	×	$U_{12 \div 31}$
	2	f	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Index	3	×	×	×	×	$I_{\scriptscriptstyle \Sigma}$	I_1	I_2	I_3	×	×	×	×	×	×	×	×	×	$I_{1 \div 3}$	×
<u> </u>	4	×	×	×	×	$P_{\scriptscriptstyle \Sigma}$	×	×	×	×	×	×	$P_{IMP,vc}$	P_{EXPc}	×	×	×	×	×	×
	5	×	×	×	×	$Q_{\scriptscriptstyle \Sigma}$	×	×	×	×	×	×	×	×	$Q_{L,IMP_{AVG}}$	$Q_{CIMP_{AVG}}$	$Q_{LEXP_{syc}}$	$Q_{CEXP_{AVC}}$	×	×
Main	6	×	×	×	×	$S_{\scriptscriptstyle \Sigma}$	×	×	×	×	×	×	$S_{IMP,vc}$	$S_{EXP,uc}$	×	×	×	×	×	×
	7	×	×	×	×	PF_{Σ}	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	8	×	×	×	×	×	×	×	×	$THD_{U_{12}}$	$THD_{U_{\alpha \alpha}}$	$THD_{U_{21}}$	×	×	×	×	×	×	×	$THD_{U_{12,23}}$
	9	×	×	×	×	×	THD_{I_1}	$THD_{I_{\gamma}}$	THD_{I_3}	×	×	×	×	×	×	×	×	×	$THD_{I_{1\perp3}}$	×

									3	Ph-4\	N Ba	lance	ed							
											Su	b Inde	ex							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	OFF	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	1	×	×	×	×	×	$U_{\scriptscriptstyle 1N}$	×	×	×	×	×	×	×	×	×	×	×	×	×
	2	f	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
<u>e</u>	3	×	×	×	×	×	I_1	×	×	×	×	×	×	×	×	×	×	×	×	×
Index	4	×	×	×	×	$P_{\!\scriptscriptstyle \Sigma}$	P_1	×	×	×	×	×	$P_{IMP,vc}$	P_{EXPc}	×	×	×	×	×	×
	5	×	×	×	×	$Q_{\scriptscriptstyle \Sigma}$	Q_1	×	×	×	×	×	×	×	$Q_{L,IMP,vc}$	$Q_{CIMP,vc}$	Q_{LEXPc}	$Q_{CEXP_{eve}}$	×	×
Main	6	×	×	×	×	$S_{\scriptscriptstyle \Sigma}$	S_1	×	×	×	×	×	$S_{IMP,vc}$	$S_{EXP,vo}$	×	×	×	×	×	×
	7	×	×	×	×	×	PF_1	×	×	×	×	×	×	×	×	×	×	×	×	×
	8	×	×	×	×	×	$THD_{U_{i,j}}$	×	×	×	×	×	×	×	×	×	×	×	×	×
	9	×	×	×	×	×	$THD_{I_{i}}$	×	×	×	×	×	×	×	×	×	×	×	×	×

	3Ph-3W Balanced																			
			Sub Index																	
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	OFF	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	1	×	×	×	×	×	×	×	×	U_{12}	×	×	×	×	×	×	×	×	×	×
	2	f	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Index	3	×	×	×	×	×	×	×	I_3	×	×	×	×	×	×	×	×	×	×	×
2	4	×	×	×	×	P_{Σ}	×	×	×	×	×	×	P_{IMPa}	P_{EXP}	×	×	×	×	×	×
		×	×	×	×	$Q_{\scriptscriptstyle \Sigma}$	×	×	×	×	×	×	×	×	$Q_{L,IMP,vc}$	$Q_{C IMP_{AVG}}$	$Q_{L,EXP,vo}$	$Q_{CEXP,vc}$	×	×
Main	6	×	×	×	×	$S_{\scriptscriptstyle \Sigma}$	×	×	×	×	×	×	$S_{IMP_{AVG}}$	$S_{EXP,uc}$	×	×	×	×	×	×
	7	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	8	×	×	×	×	×	×	×	×	$THD_{U_{12}}$	×	×	×	×	×	×	×	×	×	×
	9	×	×	×	×	×	×	×	$THD_{I_{2}}$	×	×	×	×	×	×	×	×	×	×	×

										1F	h-2V	V								
			Sub Index																	
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	OFF	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	1	×	×	×	×	×	$U_{_{1N}}$	×	×	×	×	×	×	×	×	×	×	×	×	×
	2	f	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
<u>e</u>	3	×	×	×	×	×	I_1	×	×	×	×	×	×	×	×	×	×	×	×	×
Index	4	×	×	×	×	×	P_1	×	×	×	×	×	$P_{IMP,vc}$	$P_{EXP,vvc}$	×	×	×	×	×	×
	5	×	×	×	×	×	Q_{l}	×	×	×	×	×	×	×	$Q_{LIMP_{IMG}}$	$Q_{CIMP,vc}$	$Q_{L,EXP_{eve}}$	$Q_{CEXP_{inc}}$	×	×
Main	6	×	×	×	×	×	S_1	×	×	×	×	×	$S_{IMP,y,z}$	$S_{EXP_{eve}}$	×	×	×	×	×	×
	7	×	×	×	×	×	PF_1	×	×	×	×	×	×	×	×	×	×	×	×	×
	8	×	×	×	×	×	$THD_{U_{1,1}}$	×	×	×	×	×	×	×	×	×	×	×	×	×
	9	×	×	×	×	×	THD_{I_1}	×	×	×	×	×	×	×	×	×	×	×	×	×

	2Ph-2W																			
			Sub Index																	
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	OFF	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	1	×	×	×	×	×	×	×	×	U_{12}	×	×	×	×	×	×	×	×	×	×
	2	f	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Index	3	×	×	×	×	×	I_1	×	×	×	×	×	×	×	×	×	×	×	×	×
밀	4	×	×	×	×	×	P_1	×	×	×	×	×	P_{IMPa}	$P_{\scriptscriptstyle FXP}$	×	×	×	×	×	×
		×	×	×	×	×	Q_1	×	×	×	×	×	×	×	$Q_{L,IMP,vc}$	$Q_{CIMPive}$	$Q_{L,EXP,vo}$	Q_{CEXP}	×	×
Main	6	×	×	×	×	×	S_1	×	×	×	×	×	$S_{IMP,vc}$	$S_{EXP.u.c}$	×	×	×	×	×	×
	7	×	×	×	×	×	PF_1	×	×	×	×	×	×	×	×	×	×	×	×	×
	8	×	×	×	×	×	×	×	×	$THD_{U_{12}}$	×	×	×	×	×	×	×	×	×	×
	9	×	×	×	×	×	$THD_{I_{c}}$	×	×	×	×	×	×	×	×	×	×	×	×	×

9.4.3 X3M Input registers

In this chapter the X3M original registers are listed with all the available measurements.

Addr.	Туре	Description	Unit	Symbol		System config / Notes
200	Float	Phase to neutral Voltage, THD	0/	$THD_{U_{1N}}$	⇒	3P4W, 3P-b 4W, 1P2W
201	IEEE754	Phase to phase Voltage, THD	%	$\mathit{THD}_{U_{12}}$	⇒	3P3W, 3P-b 3W, 2P2W
202	Float	Phase to neutral Voltage, THD	%	$THD_{U_{2N}}$	⇒	3P4W
203	IEEE754	Phase to phase Voltage, THD	70	$THD_{U_{23}}$	⇒	3P3W
204	Float	Phase to neutral Voltage, THD	%	$THD_{U_{3N}}$	⇒	3P4W
205	IEEE754	Phase to phase Voltage, THD	70	$THD_{U_{31}}$	⇒	3P3W
206 207	Float IEEE754	Line current, THD	%	THD_{I_1}	⇒	3P4W, 3P3W, 3P-b 4W, 1P2W
208 209	Float IEEE754	Line current, THD	%	THD_{I_2}	⇒	3P4W , 3P3W
210 211	Float IEEE754	Line current, THD	%	THD_{I_3}	⇒	3P4W , 3P3W, 3P-b 3W
212	Float	Voltage Input Frequency	Hz	f_{1N}	⇒	3P4W, 3P-b 4W, 1P2W
213	IEEE754	voltage input i requestoy	1 12	f_{12}	⇒	3P3W, 3P-b 3W, 2P2W
214 215	Float IEEE754	Phase to Neutral Voltage, RMS Amplitude	V	U_{1N}	⇒	3P4W, 3P-b 4W, 1P2W
216 217	Float IEEE754	Phase to Neutral Voltage, RMS Amplitude	V	U_{2N}	⇒	3P4W
218	Float	Phase to Neutral Voltage, RMS	V	U_{3N}	⇒	3P4W
219	IEEE754 Float	Amplitude Phase to Phase Voltage, RMS				
221	IEEE754	Amplitude	V	U_{12}	⇒	3P4W, 3P3W, 3P-b 3W, 2P2W
222 223	Float IEEE754	Phase to Phase Voltage, RMS Amplitude	V	U_{23}	⇒	3P4W, 3P3W
224 225	Float IEEE754	Phase to Phase Voltage, RMS Amplitude	V	U_{31}	⇒	3P4W, 3P3W
226 227	Float IEEE754	Line current, RMS Amplitude	Α	I_1	⇒	3P4W, 3P3W, 3P-b 4W, 1P2W
228 229	Float IEEE754	Line current, RMS Amplitude	Α	I_2	⇒	3P4W , 3P3W
230 231	Float IEEE754	Line current, RMS Amplitude	Α	I_3	⇒	3P4W , 3P3W, 3P-b 3W
232 233	Float IEEE754	Neutral Current, RMS Amplitude	Α	I_N	⇒	3P4W
234 235	Float IEEE754	Phase Active Power (+/-)	W	P_1	⇒	3P4W, 3P-b 4W, 1P2W
236 237	Float IEEE754	Phase Active Power (+/-)	W	P_2	⇒	3P4W
238 239	Float IEEE754	Phase Active Power (+/-)	W	<i>P</i> ₃	⇒	3P4W
240 241	Float IEEE754	Phase Reactive Power (+/-)	var	Q_1	⇒	3P4W, 3P-b 4W, 1P2W
242 243	Float IEEE754	Phase Reactive Power (+/-)	var	Q_2	⇒	3P4W
244 245	Float IEEE754	Phase Reactive Power (+/-)	var	Q_3	⇒	3P4W
246 247	Float IEEE754	Phase Apparent Power	VA	S_1	⇒	3P4W, 3P-b 4W, 1P2W
248 249	Float IEEE754	Phase Apparent Power	VA	S_2	⇒	3P4W

Addr.	Туре	Description	Unit	Symbol	System config / Notes
250 251	Float IEEE754	Phase Apparent Power	VA	S_3	⇒ 3P4W
252 253	Float IEEE754	Phase Power Factor (+/-)	-	λ_1	⇒ 3P4W, 3P-b 4W, 1P2W
254 255	Float IEEE754	Phase Power Factor (+/-)	-	λ_2	⇒ 3P4W
256 257	Float IEEE754	Phase Power Factor (+/-)	-	λ_3	⇒ 3P4W
258 259	Float IEEE754	Phase Voltage, Mean THD	%	$THD_{U_{\lambda}}$ $THD_{U_{\Delta}}$	⇒ 3P4W ⇒ 3P3W
260 261	Float IEEE754	Line current, Mean THD	%	$THD_{I_{\Sigma}}$	⇒ 3P4W, 3P3W
262 263	Float IEEE754	Phase to Neutral Mean Voltage, RMS Amplitude	V	U_{λ}	⇒ 3P4W
264 265	Float IEEE754	Phase to Phase Mean Voltage, RMS Amplitude	V	U_{Δ}	⇒ 3P4W, 3P3W
266 267	Float IEEE754	Three phase current, RMS Amplitude	Α	$I_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P3W
268 269	Float IEEE754	Total Active Power (+/-)	W	$P_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
270 271	Float IEEE754	Total reactive power (+/-)	var	$Q_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
272 273	Float IEEE754	Total apparent power	VA	$S_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
274 275	Float IEEE754	Total power factor (+/-)	-	$\lambda_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
276 277	Float IEEE754	Total imported Active Power, AVG	W	P_m +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
278 279	Float IEEE754	Total imported inductive power, AVG	var	$Q_{m ind}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
280 281	Float IEEE754	Total imported capacitive power, AVG	var	$Q_{m \ cap} +$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
282 283	Float IEEE754	Total imported apparent power, AVG	VA	S_m +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
284 285	Float IEEE754	Total exported Active Power, AVG	W	P_m –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
286 287	Float IEEE754	Total exported inductive power, AVG	var	$Q_{m\ ind}$ –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
288 289	Float IEEE754	Total exported capacitive power, AVG	var	$Q_{m\ cap}$ –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
290 291	Float IEEE754	Total exported apparent power, AVG	VA	S_m –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
292 293	Float IEEE754	Total imported Active Power, MD	W	P_{Max} +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
294 295	Float IEEE754	Total imported inductive power, MD	var	$Q_{Max\ ind}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
296 297	Float IEEE754	Total imported capacitive power, MD	var	$Q_{Max\ cap}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
298 299	Float IEEE754	Total imported apparent power, MD	VA	S_{Max} +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
300 301	Float IEEE754	Total exported Active Power, MD	W	P _{Max} -	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only

Addr.	Туре	Description	Unit	Symbol	System config / Notes
302 303	Float IEEE754	Total exported inductive power, MD	var	$Q_{\it Max~ind}$ $-$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
304 305	Float IEEE754	Total exported capacitive power, MD	var	$Q_{\it Max\; cap}$ $-$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
306 307	Float IEEE754	Total exported apparent power, MD	VA	S _{Max} -	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
308 : 326		NOT USED			Return undefined valued, if read.
327 328	Integer (4 bytes)	Imported active energy	kWh/10	E_a +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
329 330	Integer (4 bytes)	Imported inductive energy	kvarh/10	$E_{r ind}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
331 332	Integer (4 bytes)	Imported capacitive energy	kvarh/10	$E_{r cap}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
333 334	Integer (4 bytes)	Imported apparent energy	kVAh/10	E_S +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
335 336	Integer (4 bytes)	Exported active energy	kWh/10	E_a –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
337 338	Integer (4 bytes)	Exported inductive energy	kvarh/10	$E_{r ind}$ –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
339 340	Integer (4 bytes)	Exported capacitive energy	kvarh/10	$E_{r \; cap}$ $-$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
341 342	Integer (4 bytes)	Exported apparent energy	kVAh/10	E_S –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
343 344	Integer (4 bytes)	Life Timer	S	t	- import Export only
345 346 347 348	Integer	Imported active energy (Hi Resolution)	Wh/10	E_a +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
349 350 351 352	Integer (8 bytes)	Imported inductive energy (Hi Resolution)	varh/10	$E_{r ind}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
353 354 355 356	Integer (8 bytes)	Imported capacitive energy (Hi Resolution)	varh/10	$E_{r \; cap}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
357 358 359 360	Integer (8 bytes)	Imported apparent energy (Hi Resolution)	VAh/10	E_S +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
361 362 363 364	Integer (8 bytes)	Exported active energy (Hi Resolution)	Wh/10	E_a –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
365 366 367 368	Integer (8 bytes)	Exported inductive energy (Hi Resolution)	varh/10	$E_{r ind}$ –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only

Addr.	Type	Description	Unit	Symbol	System config / Notes
369 370 371 372	Integer (8 bytes)	Exported capacitive energy (Hi Resolution)	varh/10	$E_{r cap}$ –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
373 374 375 376	Integer (8 bytes)	Exported apparent energy (Hi Resolution)	VAh/10	E_S –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only

9.4.4 Input Registers (backward compatibility area)

In this area the registers guaranteeing the compatibility with the previous ELECTREX products are listed. This allows compatibility with written software. The considered registers are KILO (T)'s.

Addr.	Туре	Description	Unit	Symbol		Wirings / Notes
0 1	Float IEEE754	Three-phase voltage, RMS amplitude	V	$U_{\scriptscriptstyle \Delta}$	⇒	3P4W, 3P3W
2 3	Float IEEE754	Three-phase current, RMS amplitude	Α	$I_{\scriptscriptstyle \Sigma}$	⇒	3P4W, 3P3W
4 5	Float IEEE754	Total Active Power (+/-)	W	$P_{\scriptscriptstyle \Sigma}$	⇒	3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
6 7	Float IEEE754	Total reactive power (+/-)	var	$Q_{\scriptscriptstyle \Sigma}$	⇒	3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
8 9	Float IEEE754	Total apparent power	VA	$S_{\scriptscriptstyle \Sigma}$	⇒	3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
10 11	Float IEEE754	Total power factor (+/-)	-	$\lambda_{\scriptscriptstyle \Sigma}$	⇒	3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
12 13	Float IEEE754	Total imported Active Power, AVG	W	P_m +	⇒	3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
14 15	Float IEEE754	Total imported apparent power, AVG	VA	S_m +	⇒	3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
16 17	Float IEEE754	Total imported Active Power, MD	W	P_{Max} +	⇒	3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
18 19	Float IEEE754	Total imported apparent power, MD	VA	S_{Max} +	⇒	3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
20 21	Float IEEE754	Imported active energy	KWh	E_a +	⇒	3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
22 23		NOT USED			Return	undefined valued, if read.
24 25	Float IEEE754	Imported inductive energy	Kvarh	$E_{r ind}$ +	⇒	3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
26 27	Integer (4 bytes)	Serial number		S/N		
28	Float	Phase to neutral RMS Voltage	V	U_{1N}	⇒	3P4W, 3P-b 4W, 1P2W
29	IEEE754	Phase to phase RMS Voltage	V	U_{12}	⇒	3P3W, 3P-b 3W, 2P2W
30	Float	Phase to neutral RMS Voltage	V	U_{2N}	⇒	3P4W
31	IEEE754	Phase to phase RMS Voltage	V	U_{23}	⇒	3P3W
32	Float	Phase to neutral RMS Voltage	\/	U_{3N}	⇒	3P4W
33	IEEE754	Phase to phase RMS Voltage	V	U_{31}	⇒	3P3W
34 35	Float IEEE754	Line current, RMS amplitude	А	I_1	⇒	3P4W, 3P3W, 3P-b 4W, 1P2W

Addr.	Туре	Description	Unit	Symbol	Wirings / Notes
36 37	Float IEEE754	Line current, RMS amplitude	Α	I_2	⇒ 3P4W , 3P3W
38 39	Float IEEE754	Line current, RMS amplitude	Α	I_3	⇒ 3P4W , 3P3W, 3P-b 3W
40 41	Float IEEE754	Phase Active Power (+/-)	W	P_1	⇒ 3P4W, 3P-b 4W, 1P2W
42 43	Float IEEE754	Phase Active Power (+/-)	W	P_2	⇒ 3P4W
44 45	Float IEEE754	Phase Active Power (+/-)	W	P_3	⇒ 3P4W
46 47	Float IEEE754	Voltage Input Frequency	Hz	f_{1N} f_{12}	⇒ 3P4W⇒ 3P3W
48 49	Float IEEE754	Phase reactive power (+/-)	var	Q_1	⇒ 3P4W, 3P-b 4W, 1P2W
50 51	Float IEEE754	Phase reactive power (+/-)	var	Q_2	⇒ 3P4W
52 53	Float IEEE754	Phase reactive power (+/-)	var	Q_3	⇒ 3P4W
54 55	Float IEEE754	Phase apparent power	VA	S_1	⇒ 3P4W, 3P-b 4W, 1P2W
56 57	Float IEEE754	Phase apparent power	VA	S_2	⇒ 3P4W
58 59	Float IEEE754	Phase apparent power	VA	S_3	⇒ 3P4W
60 61	Float IEEE754	Phase reactive power (+/-)	var	Q_1	⇒ 3P4W, 3P-b 4W, 1P2W
62 63	Float IEEE754	Phase reactive power (+/-)	var	Q_2	⇒ 3P4W
64 65	Float IEEE754	Phase reactive power (+/-)	var	Q_3	⇒ 3P4W
66 67	Float IEEE754	Phase power factor (+/-)	-	λ_1	⇒ 3P4W, 3P-b 4W, 1P2W
68 69	Float IEEE754	Phase power factor (+/-)	-	λ_2	⇒ 3P4W
70 71	Float IEEE754	Phase power factor (+/-)	-	λ_3	⇒ 3P4W
72 73		NOT AVAILABLE			Return undefined valued, if read.
74 75	Float IEEE754	Exported active energy	kWh	E_a –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
76 77		NOT USED			Return undefined valued, if read.
78 79	Float IEEE754	Exported capacitive energy	kvar	$E_{r cap}$ –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
80 81	Float IEEE754	Exported inductive energy	kvar	$E_{r ind}$ –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
82 83		NOT USED			Return undefined valued, if read.

Addr.	Туре	Description	Unit	Symbol	Wirings / Notes
84 85	Float IEEE754	Total imported capacitive energy	kvar	$E_{r cap}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
86 : 93		NOT AVAILABLE			Return undefined valued, if read.
94 95	Float IEEE754	Total imported inductive power, AVG	var	$Q_{m ind}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
96 : 125		NOT AVAILABLE			Return undefined valued, if read.
126	Float	Phase to neutral Voltage, THD	%	$THD_{U_{1N}}$	⇒ 3P4W
127	IEEE754	Phase to phase Voltage, THD	/0	$THD_{U_{12}}$	⇒ 3P3W
128 129	Float IEEE754	Line current, THD	%	$T\!H\!D_{I_1}$	⇒ 3P4W, 3P3W
130	Float	Phase to neutral Voltage, THD	%	$THD_{U_{2N}}$	⇒ 3P4W
131	IEEE754	Phase to phase Voltage, THD	/0	$THD_{U_{23}}$	⇒ 3P3W
132 133	Float IEEE754	Line current, THD	%	THD_{I_2}	⇒ 3P4W, 3P3W
134	Float	Phase to neutral Voltage, THD	%	$THD_{U_{3N}}$	⇒ 3P4W
135	IEEE754	Phase to phase Voltage, THD	/0	$THD_{U_{31}}$	⇒ 3P3W
136 137	Float IEEE754	Line current, THD	%	THD_{I_3}	⇒ 3P4W, 3P3W
138 : 199		RESERVED			Return undefined valued, if read.

9.4.5 Coils (back compatibility)

Coils area compatible with the previous instruments:

	Coils, back compatibility									
Address	Description	Note:								
0	Clear AVG (1,3)	Reset all the power values in floating average								
1	Clear AVG (1,3)	as 0001								
2	Clear MD (1,3)	Reset all the power peak values								
3	Clear MD (1,3)	as 0003								
4	Clear energy counters (1)	Reset all the energy counters								
5	Warm boot (1)	Reinitialize the instrument (does not reset the counters)								
6	AVG/MD synchronization (1,3)	Synchronize the integration period								
7	Clear MD (1,3)	as 0003								
8	Not allocated									
9	Out 1 (3)	Controls output nr. 1 (if the alarm use is inhibited)								
10	Out 2 (3)	Controls output nr. 2 (if the alarm use is inhibited)								
11	Not allocated									
12	Digital outs watchdog enable (3)	Protection Timer on inputs in minutes								
13	Not allocated									
14	Not allocated									
15	Not allocated									
16	Not allocated									
17	Swap words & bytes (2, 4)	Format Control of the memory stored data								
18	Not allocated									

9.4.6 X3M coils

Proprietary X3M coils area.

	X3M Coils								
Address	Description	Note:							
64	Swap bytes (5)	Data format control in memory							
65	Swap words (5)	Data format control in memory							
66	Reset (warm boot) (1,2)	Reinitialize the device (does not reset the counters)							
67	Clear energy counters (1,2)	Reset all the energy counters							
68	Power integration synchronization (1,2)	Synchronize the integration time.							
69	Clear AVG powers (1,2)	Reset all the power value in moving average							
70	Clear MD powers (1,2)	Reset all the power peak values							
71	NOT USED (1)								

- (1) Reading the coil the result is always 1.
- (2) The command is triggered on the leading edge, that is when the coil is set to 1 (TRUE). It is not necessary to set the coil to 0 after setting it to 1.
- (4) Negative logic, to be compatible with Kilo:
 - Coil = 1 ⇒ Swap Bytes = Swap Words = FALSE (Motorola like, as Modbus standard)
 - Coil = 0

 Swap Bytes = Swap Words = TRUE (Intel like).
 - The measurement resets "Swap Bytes" flag status (negative).
- (5) If set to 1 (TRUE), it inverts the bytes order (or word order) respect to the modbus standard (Motorola like).

10 File organization and management in the X3M flash memory.

10.1 File system

X3M uses a "Flash-Disk" for the storage of its configuration parameters, readings and other operating information.

Data on disk are organized in record files, as specified by the Modbus standard. Files are accessed through the Modbus functions "Write General File" and "Read General File".

Available space is 2.088.960 bytes, organized in 4.096 allocation units of 510 bytes each. As each file occupies at least one allocation unit, there may be at most 4096 disk files.

Each file is uniquely identified by a 2-byte index (*file number*, 0 to 65535) and can contain up to 10,000 records, numbered from 0 to 9,999. The record max size is 238 bytes.

Records in the same file must all share the same size. The only exception to this rule is record 0, whose size may differ from the others. Record 0 is also called the *file header*. All other records (data records) are the file *body*.

The first four bytes of record 0 are called "record definition structure" and contain information that is essential for file data access, such as:

- Header size:
- Size for each record in the data area;
- Information pertaining to the file organization and content:
 - RAW Flag:
 - 0 = Structured file;
 - 1 = Raw file;
 - NON HOMOGENEOUS Flag:
 - 0 = all data records share the same format (homogeneous file);
 - 1 = the file structure is such as to allow saving data records of different formats (non homogeneous file);
 - OUTPUT Flag:
 - 0 = The instrument treats this file as read only file (e.g. configuration file);
 - 1 = This file is written by the instrument (e.g. report);
 - DIRECTORY Flag: when set (flag == 1) the file is a disk directory;

The structure of X3M files is detailed in the following pages.

Record Number	Record Size (bytes)	Field N	lame and Size	Туре	Value
	(10) 200)		Header Size (1 byte)	Unsigned integer	h
			Data record size (1 byte)	Unsigned integer	d
			Reserved (1 byte)	Unsigned integer	0
			Reserved (1 byte)	Unsigned integer	0
		Record definition structure	Reserved (1 byte)	Unsigned integer	0
0	h (1 + 222)	(4 bytes)	Reserved (1 byte)	Unsigned integer	0
	(h ≤ 238)		DIRECTORY Flag (1 bit)	Flag	-
			OUTPUT Flag (1 bit)	Flag	-
			NON HOMOGENEOUS Flag (1 bit)	Flag	-
			RAW Flag (1 bit)	Flag	-
		Other	-	-	
1	d (d ≤ 238)		-	-	
2	d		-	-	
:	:		:	:	
N (N ≤ 9999)	d		-	-	

All numeric values in file fields are in big-endian order.

Each file contains the following information: Name (alphanumeric string of 36 characters max length); Creation date/time; Last modification date/time.

This information is accessible through the disc *directories* as explained further on in this document.

It should be noted that file names need not be unique: it is therefore possible to have more than one file bearing the same name. Files are uniquely identified by their *file number* only.

10.1.1 Types of file

The X3M classifies the possible 65.536 files in 256 "types" according to the value of most significant byte of the *file number*. The least significant byte is used to identify the possible 256 files belonging to each type.

The designation that will be used in the following pages will be:

type.number

where type and number are hexadecimal values in the interval 00 and FF.

Example

02.07 it identifies the 7th file of type 2 (modbus index 0207h \equiv 519 decimal) 03.8B it identifies the 139th file of type 3 (modbus index 038Bh \equiv 907 decimal)

Each file type is dedicated to a specific service:

- The file types 1-254 are reserved for storage of the field readings and for the instrument configuration parameters:
 - Type 1: Load profiles logging;
 - Type 2: System logs;
 - Type 3: Configuration logs;
 - Type 4: Events log (voltage losses and overcurrent);
 - Type 5: Peaks logging;
 - Type 6: Time-of-use tariff calendar;
 - Type 7: Time-of-use energy counters;
 - Type 8: Time-of use maximum demand;
 - Type 253: user defined files;
 - Type 254: user defined files;
- The file type 255 is reserved for access to the memory area containing the instrument firmware (firmware up/download);
- The file type 0 designates the disk "directories".

10.1.2 File structure

There are two file categories:

- files containing structured information, whose fields have an assigned type (structured files)
- files containing "raw" data, without defined fields, or field types (raw files)

Raw files are distinguished by the RAW FILE flag in the record definition structure

10.1.3 Structured Files

Structured files are mostly used to save on disc the values of variables allocated in the device volatile memory. These variables can be used to hold configuration values (*input variables*) or to hold the results of the analysis and data logging functions (*output variables*)

Each structured file contains one or more "Variable definition structures" describing the variables format and content:

	Variable definition structure									
Field Size	Field Name		Field Name		Field Type	Field Description	Values			
1 byte	Reserved		Reserved		Unsigned integer	Reserved	0			
1 byte	Descriptor list size		Unsigned integer	Size(in bytes) of the descriptor list container in the structure	s					
		Descriptor 1								
	5	Descriptor 2		A list of december of fiction the consistence of in the						
s bytes	Descriptor List	:	-	A list of descriptors defining the variables stored in the file.	-					
		Descriptor m								

Structured files can be of two types:

- HOMOGENEOUS FILES containing data records sharing the same format;
- NON HOMOGENEOUS FILES, containing data records whose format may differ

Homogeneous files contain - in the file header - a single variable definition structure.

Non-homogeneous files contain a variable definition structure per data record: their header contains only the record definition structure.

Homogeneous and non-homogeneous files can be distinguished by the value of the *NON HOMOGENEOUS FILE* flag, in the record definition structure.

10.1.4 Descriptors

Each descriptor listed in the "variable definition structure" defines a file variable. The structure of a generic descriptor is as follows:

	Generic descriptor								
Filed Size	Field Name	Field Type	Field Description						
1 byte	Descriptor size	Unsigned Integer	Descriptor size (in bytes)						
1 bit	External allocation flag	Flag	flag=0 indicates that the variable is stored within the descriptor; If flag=1 the variable is stored externally.						
1 bit	Single allocation flag	Flag	This flag is significant only if the variable is allocated externally to the descriptor; flag=0 indicates that the file contains only one copy of the variable; If flag=1 means the file contains multiple copies.						
6 bits	Variable type ID	Unsigned Integer	Numeric index: identifies the data type of the variable defined by this descriptor.						
Varies with the value of the field "Variable type ID"	Variable Identification	Varies with the value of the field "Variable type ID"	A parameter (which may be simple or a structure) identifying the defined variable.						
Varies with the value of the field "Variable type ID"	Variable	Varies with the value of the field "Variable type ID"	Variable defined by this descriptor (which may be simple or a structure). This field is present only if the external allocation flag is set to 0.						

Descriptors – and the variables they define - are further classified, as follows, according to the values of the external allocation and single allocation flags:

Variable Descriptor Types in structured files									
External Allocation Flag	Single Allocation Flag Descriptor Type								
0	0	Internal allocation							
0	1	internal anocation							
1	0	External multiple allocation							
1	1	External single allocation							

The following variable types are defined:

			Variable types
	Name	ID	Description
	Word	01h	2 bytes: signed or unsigned integer
	DoubleWord	02h	4 bytes: signed or unsigned integer or single accuracy IEEE-754 float
Generic Types	QuadWord	03h	8 bytes: signed or unsigned integer or double accuracy IEEE-754 float
7,700	Byte pair	04h	Structure having two fields, each consisting of one byte (signed or unsigned integer).
	Byte Array	05h	Variable length byte array (alphanumeric ASCIIZ string or array of signed or unsigned integers)
	Unix Timestamp	06h	Number of <i>non leap</i> seconds since the so called <i>Unix Epoch</i> (1/1/1970 00:00:00)
	Unix Timestamp + offset	07h	Structured type including the following fields: - Number of <i>non leap</i> seconds since the so called <i>Unix Epoch</i> (1/1/1970 00:00:00); - GMT offset in minutes (signed); - DST offset in minutes (signed).
Date/Time	Unix Timestamp + DST flag	08h	Structured type including the following fields: - Number of <i>non leap</i> seconds since the so called <i>Unix Epoch</i> (1/1/1970 00:00:00); - Flag indicating if, at this instant, STANDARD TIME or DAYLIGHT SAVING TIME is in effect.
	Date	09h	Structured type including the following fields: Century, Year, Month, Day
	Time	0Ah	Structured type including the following fields: Hours, Minutes, Seconds, DST flag
	Date/Time	0Bh	Structured type including the following fields: Century, Year, Month, Day, Hours, Minutes, Seconds, DST flag
	Input Registers Group	0Ch	Structured type including a group of contiguous input registers
Modbus Registers	Holding Registers Group	0Dh	Structured type including a group of contiguous holding registers
	Arithmetic Operation between 2 Input Registers	0Eh	Structured type defining an arithmetic operation (e.g. comparison) to be carried out between two input registers

The following table indicates the formats of each variable type and of the corresponding parameters:

		Variable types	
Type Name	Type ID	Variable	Variable Identification
Word	01h	Field Size (bytes) Field Name Field Type Description 2 Variable ID unsigned integer Numeric index identifying the variable defined by the descriptor	Field Size Field Field Type Description 2 WORD Signed or unsigned integer 2 byte data
DoubleWord	02h	Field size (bytes) Field type Description 2 Variable ID unsigned integer Numeric index identifying the variable defined by the descriptor	Field size (bytes) Field Field type Description 4 DWORD Signed or unsigned integer or single precision IEEE754 float
QuadWord	03h	Field size (bytes) Field type Description 2 Variable ID unsigned integer Variable descriptor	Field size (bytes) Field Field type Description 8 QWORD Signed or unsigned integer or double precision IEEE754 float
Byte pair	04h	Field size (bytes) Field rame Field type Description 2 Variable ID unsigned integer Variable defined by the descriptor	Field size (bytes) name Field type Description 1 BYTE 1 Signed or unsigned integer Structure: 2 fields, one byte each integer

		Variable types	
Type Name	Type	Variable	Variable Identification
Byte Array	05h	Field size (bytes) Field name Field type Description 2 Variable ID unsigned integer Numeric index identifying the variable defined by the descriptor 2 Array Size unsigned integer Array size (bytes)	Field size (bytes) 1 BYTE 1 Signed or unsigned integer or ASCII character Signed or unsigned integer or ASCII character Signed or unsigned integer or ASCII character Signed or unsigned integer or ASCII character Signed or unsigned integer or ASCII character Signed or unsigned integer or ASCII character, the final NULL can be omitted.
Unix Epoch Time	06h	Field size (bytes) Field type Description 2 Variable ID unsigned integer Numeric index identifying the variable defined by the descriptor	Field size (bytes) Field name Field type Description UNIX unsigned integer Seconds since the so called Unix Epoch (1/1/1970 00:00:00)
Unix Epoch Time + offset	07h	Field size (bytes) Field type Description 2 Variable ID unsigned integer Variable defined by the descriptor	Field size (bytes) 4 UNIX unsigned integer 2 GMT offset signed integer 2 DST offset signed integer 3 DST offset in minutes

		Variable types					
Type Name	Type ID	Variable		Variable Identification			
Unix Epoch Time + DST flag	08h	Field size (bytes) Field type Description 2 Variable ID unsigned integer Variable defined by the descriptor	Field size (bytes) 4	Field name UNIX TIMESTAMP DST flag Reserved	Field type unsigned integer Boolean	Description Number of non leap seconds since the so called Unix Epoch (1/1/1970 00:00:00) Flag indicating if, at this instant, STANDARD TIME or DAYLIGHT SAVING TIME is in effect. Reserved	
Date	09h	Field size (bytes) Field type Description 2 Variable ID unsigned integer Numeric index identifying the variable defined by the descriptor	Field size (bytes) 1 1 1	Field name Century Year Month Day	Field unsig integ unsig integ unsig integ unsig integ integ	ned ger Year med Month med per ned Month	
Hour	0Ah	Field size (bytes) Field type Description 2 Variable ID unsigned integer Variable descriptor	Field size (bytes) 1 1 1	Field name Ore Minutes Seconds DST flag	Field type unsigned integer unsigned integer unsigned integer	Description Hours Minutes Seconds Flag indicating if, at this instant, STANDARD TIME or DAYLIGHT SAVING TIME is in effect.	

		Variable types					
Type Name	Type ID	Variable	Variable Identification				
Date/Hour	0Bh	Field size (bytes) Field type Description 2 Variable ID unsigned integer Numeric index identifying the variable defined by the descriptor	Field size (bytes) 1 1 1 1 1 1 1 1 1 1 1	Field name Century Year Month Day Hour Minute Seconds DST flag	Field type unsigned integer Boolean	Description Century Year Month Day Hour Minute Seconds Flag indicating if, at this instant, STANDARD TIME or DAYLIGHT SAVING TIME is in effect.	
Input Register Group	0Ch	Field size (bytes) 2 Address unsigned integer register in this group 2 Register unsigned number integer registers in this group	2	Field name REGISTER REGISTER REGISTER	1 - 2 -	Description Register 1 Register 2 Register N	
Holding Register Group	0Dh	Field size (bytes) 2 Address unsigned integer register in this group Register unsigned integer registers in this group Number integer registers in this group	2	Field name REGISTER REGISTER REGISTER	1 - 2 -	Description Register 1 Register 2 Register N	

					Variable types	
Type Name	Type				Variable	Variable Identification
		Field size (bytes)	Field name Address of A	Field type unsigned integer	Description Address of input register A. If the "Type of A" field indicates a 32-bit data type, the instruments will operate on a pair of contiguous registers starting at this address. Data type stored in A:	
		1	Type of A	unsigned integer	1 →Signed 16 bit integer 2 → Signed 32 bit integer 3 → Float 32 bit IEEE754	
Arithmetic Operation between 2 Input Registers	0Eh	1	Operation ID	unsigned integer	Operation type: 0→minimum value assumed by A. 1→ maximum value assumed by A 2→minimum value assumed by A when B is positive 3→maximum value assumed by A when B is positive 4→minimum value assumed by A when B is negative 5→maximum value assumed by A when B is negative	Field size (bytes) 2 or 4 bytes, according to the data type of the selected input registers Field Field type Description Result - The result of the operation
		2	Address of B	unsigned integer	Address of input register B. If the " <i>Type B</i> " field indicates a 32-bit data type, the instruments will operate on a pair of contiguous registers starting at this address.	
		1	Type of B	unsigned integer	Data type stored in B: 1 →Signed 16 bit integer 2 → Signed 32 bit integer 3 → Float 32 bit IEEE754	
		1	Reserved	-	Reserved	

10.1.5 Homogenous files

Homogenous files always contain a single "variable definition structure" allocated in the header and contiguous to the "record definition structure". All the descriptors contained in this structure define a variable that can be allocated either in the file header (in the descriptor) or in the data area. The area where the variable is allocated is described by the status of the external allocation flag contained in the descriptor.

Data record all share the same structure and contain only the variables specified by the descriptor list contained in the header.

Variables allocated in the data area are distinguished in single and multiple allocation variables.

If no single external allocation descriptor is present, the data area is organized as follows:

- File growth is unlimited (except for possible limitations imposed to the service type and for the overall limit of 10,000 records established by the Modbus standard);
- Each data record stores <u>all</u> variables defined by external multiple allocation descriptors, in the same order in which the descriptors appear in the variable definition structure;

Header size	5	Structure of	f an Homog	eneous File	containing no external single allocatio	n variables.	
		Size		Туре	Value		
Non Homogeneous Plag Variable definition structure (s+2 bytes) Descriptor Ven q Possible unused space Capacitor Vem q Capacit		(Dytes)					h
Non Homogeneous Plag Non Homogeneous Pla							d
No No No No No No No No						unsigned	0
Header definition structure (4 bytes)					Reserved	unsigned integer	0
Non Homogeneous Personal Control of Structure (s+2 bytes)			Lloodor dofin	itian atruatura	Reserved	unsigned	0
DIRECTORY flag (1 bit)					Reserved	unsigned	0
Non Homogeneous flag Flag Non Homogeneous flag Non Homogeneous flag Flag Non Homogeneous fl					DIRECTORY flag		0
Non Hond Gene Uous Rag (1 bit) Flag Out					(1 bit)	Flag	-
N	0					Flag	0
Variable definition structure (s+2 bytes) Descriptor list (s bytes) Descriptor Vi 1 Descriptor Vi 2 Descriptor Vi 2 Descriptor Vi 2 Descriptor Vi 3 Descriptor Vi 4 Descriptor Vi 5 Descriptor Vi 6 Descriptor Vi 7 Descriptor Vi 8 Descriptor Vi 9 Descriptor						Flag	0
Variable definition structure (s+2 bytes)			definition structure		(1 byte)		0
definition structure (s+2 bytes) Descriptor list (s bytes) Descriptor Vi p Descriptor Vem 1 - - -					(1 byte)	unsigned integer	s
(s+2 bytes) Descriptor list (s bytes) Descriptor Vip				list	Descriptor Vi 1 Descriptor Vi 2	_	-
Care Descriptor Vem 2					Descriptor Vi p		
1 d (d ≤ 238) 2 d (d ≤ 238) 2 t	ı						-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ı				Descriptor Vem q		-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-		
1 (d ≤ 238) : : : : : : : : : : : : : : : : : : :							-
Vem q - Vem 1 - Vem 2 - : Vem q - : : Vem q - : : N (N ≤ qqqq) - Qqqqq) -	1				-		
2 d Vem 1 - - - Vem q - - - N (N≤ qqqq)		$(\mathbf{a} \leq 238)$:
2 d Vem 2							-
2 d :	_						-
: : : : : : : : : : : : : : : : : : :	2	d					
N (N ≤ d					-		
N (N ≤ qqqq)	:	:		:	:		
(N S C							-
		d					
vem q	9999)				Vem q	-	-

Vi = Internal allocation variable

Vem = External multiple allocation variable

If the data definition structure contains at least one external allocation descriptor, the data section of the file is organized as follows:

- the file has as many data records as single external allocation descriptors;
- the nth data record contains:
 - the variable defined from the nth single external allocation descriptor;
 - all the variables defined by external multiple allocation descriptors, in the order listed in the variable definition structure.

Stru		Homogen	eous File containi	ng at least one external single allo	ocation varia	ble
Record Number	Record Size (bytes)		Field name and size			
	(2)100)			Header size (1 byte)	unsigned integer	h
				Data record size (1 byte)	unsigned integer	d
				Reserved (1 byte)	unsigned integer	0
				Reserved (1 byte)	unsigned integer	0
		Header	definition structure	Reserved (1 byte)	unsigned integer	0
		ricador	(4 bytes)	Reserved (1 byte)	unsigned integer	0
				DIRECTORY flag (1 bit)	Flag	0
				OUTPUT flag (1 bit)	Flag	-
	h			NON HOMOGENEOUS flag (1 bit)	Flag	0
0	(h ≤ 238)			RAW flag (1 bit)	Flag	0
			Reserved (1 byte) Descriptor list size		unsigned integer	0
		Variable definition structure (s+2 bytes)		unsigned integer	s	
			Descriptor list (s bytes)	Descriptor Vi 1 Descriptor Vi 2	-	-
				Descriptor Vi p Descriptor Vem 1	-	_
			(0 0):00)	Descriptor Vem 2	-	-
				 Descriptor Vem q	-	-
				Descriptor Ves 1 Descriptor Ves 2		
			Possik	Descriptor Ves r ble unused space	_	_
			1 03311	ne unuseu space		
				Ves 1	-	-
	c			Vem 1 Vem 2	-	-
1	(d ≤)			VCIII Z	-	
				 Vem q		
				Vem q Ves 2	-	-
				Vem 1	-	-
2	c	1		Vem 2 		-
				-	-	
				Ves r Vem 1	-	-
r	d			Vem 2	-	-
\/: _				Vem q	-	-

Vi = Internal allocation variable
Vem = External multiple allocation variable
Ves = External single allocation variable

10.1.6 Non Homogeneous files The non-homogeneous file format is as follows

		NON HOMOGENE	OUS file str	ructure		
Record Number	Record Type (bytes)	Field Name and size				Value
0	4			Header size (1 byte) Data record size		h
				(1 byte) Reserved (1 byte)		d 0
				Reserved (1 byte)		0
		Record definition structure		Reserved (1 byte)		0
		(4 bytes)		Reserved (1 byte)		0
				DIRECTORY Flag (1 bit) OUTPUT Flag		0
			NO	(1 bit)		-
			INC	NON HOMOGENEOUS flag (1 bit)		1
		,		RAW flag (1 bit)		0
1	d (d ≤ 238)	Variable definition structure (s+2 bytes)		Reserved (1 byte)		0
			Descriptor list size (1 byte) Descriptor 1 Descriptor 2 (s bytes) Descriptor n		Unsigned integer	s
						-
		Possible unused space			_	-
2	d	Variable definition structure (s+2 bytes)	Reserved (1 byte)		Unsigned integer	0
			Descriptor list size (1 byte)		Unsigned integer	s
			Descriptor list (s bytes) Descriptor 1 Descriptor 2 Descriptor n		-	-
		Possible unused space			-	-
:	:	;			·	:
N (N <= 9999)	d	Variable definition structure (s+2 bytes)	Reserved (1 byte)		Unsigned integer	0
			Descriptor list size (1 byte)		Unsigned integer	s
			Descriptor lis (s bytes)			-
		Possible unused space			-	-

The file header contains only the *"record definition structure"*The data records (1...N) each contain a *"variable definition structure"*

10.2 Type 0 files

Type 0 files contain information about type 1÷255 files stored on the disk. Because of this, type 0 files can be considered disk *"directories"*.

By reading type 0 files, it is possible to retrieve information about the files on the disk. By writing type 0 files, it is possible to create or to delete files.

A directory is a structured, homogeneous file that may contain the following output variables:

Directory – Output Variables allocated in type 0 files							
Name	ID	Туре	Description				
Firmware version	FF83h	BYTE PAIR (Unsigned integer, Unsigned integer)	Firmware version Byte 0 = Major version Byte 1 = Minor version				
File number	0080h	WORD (Unsigned integer)	Modbus File Number (unique file identifier)				
Record size	0081h	BYTE PAIR (Unsigned integer, Unsigned integer)	Size of records in the file Byte 0 = Header size Byte 1 = Data record size				
File ID	0082h	BYTE PAIR (Unsigned integer, Unsigned integer)	File organization: Byte 0 = Reserved Byte 1 = File ID				
Creation time	0083h	UNIX TIMESTAMP + OFFSET	Date/time of file creation				
Last modification time	0084h	UNIX TIMESTAMP + OFFSET	Date/time of last modification				
File size	0085h	DOUBLEWORD (Unsigned integer)	File size, in bytes				
File status	0086h	BYTE PAIR (Unsigned integer, Unsigned integer)	File status: Byte 0 = File status Byte 1 = Reserved				
File Name	0087h	BYTE ARRAY (ASCIIZ string)	File name				

All data records in a directory describe a disk file.

- The *n* record in file 00.00, where 1 ≤ n ≤ 9999, contains information about the nth disk file, in file-number order.
- The *n* record in file 00.*T*, where 1 ≤ n ≤ 256, contains information about the nth disk file of type *T*, in file-number order.

 The n record in file 00.T, where 257 ≤ n ≤ 513, contains information about type T file number n-257.

Each record contains an instance of the variable called "File status" and one of the variable called "Service status".

10.2.1 File status

Bit 2 (value 04h) of such variable is a flag (named "empty flag") that indicates if the corresponding file number is an actual disk file.

When bit 2 (value 04h) of "File status" variable is not set, the record contains information relating to a file actually present on disk. In the contrary, when bit 2 of "File status" variable is set, the only significant field within the file content is "Size" representing the free space on disk.

10.2.2 Service status

Bit 0 of "Service status" indicates the status of the service to which the file pertains.

- 1 = all OK ==> the configuration files are available and correct and the service is under execution.
- 0 = Error in the configuration file; service suspended until new and correct configuration file is written. The remaining bits indicate a well identified service status however they do not provide the same information therefore reference to each service must be considered for their meaning.

10.3 Type 1 files

Type 1 files are dedicated to the "load profiles logging service (file number from 01.00 to 01.FF). This service is mainly designed for recording load profiles (evolution of the energy counters vs. time) by means of a periodical storage on file of the content of one or more Modbus registers (input registers and/or holding registers). It can therefore be used to record any group of parameters among those performed by the instrument.

File 01.00 is a *configuration file*. It contains the registers to be sampled and the sampling interval. File 01.00 is a non-homogeneous structured file where each data record is a *configuration profile*. A validity time range may be specified for each profile. It is thus possible to program the instrument to automatically switch from a configuration profile to another at a given moment in time.

Each configuration profile contains:

- a descriptor for each configuration parameter (input variables) to which a value is assigned;
- a descriptor for each output variable that will be written to the instrument generated files.

Writing one or more valid configuration profiles in file 01.00 automatically activates the service. To disable the service, file 01.00 must be deleted.

The service will automatically generate a number of data files (one for each calendar day): each such file contains samples collected between 00:00:00 and 24:00:00 hours of the corresponding day (the sampling time is the system clock wall time). The maximum number of data files on disk is 255 (files from 01.01 to 01.FF).

The name of the data files is the same as the configuration file valid at creation time. The configuration file name is user defined.

The maximum number of data files to be stored on disk is configurable: after the maximum is reached, oldest files will be overwritten.

The data files written by the instrument are homogeneous structured files: after collecting each sample, a data record is appended at the end of the current data file, that is, the data file of the day when the sampling time occurs (*wall time*).

Samples are collected:

- at all times (wall time) multiples of the sampling interval, starting from time 00:00:00 (beginning of the day):
- each time one of the following events occur:
 - the instrument is turned on (after a power failure);
 - the instrument is reset;
 - the clock is set:
 - the service configuration is changed;
 - energy counters are reset;

Each data record contains:

- a sample of each variable listed in the configuration file:
- a time-stamp (with configurable format) of the sampling time;
- an identification designating the reason (event) which triggered the sampling;

The maximum size of a data file can be set during the configuration: if the size limit is exceeded within the same day, writing to the file is disabled until the day ends. Sampling is restarted the following day on a new file.

10.3.1 Service configuration

The "load profiles logging" service makes use of the following output variables:

The "load profiles logging" service makes use of the following output variables:						
		file Logging service – Output Vari				
Name	ID	Туре	Description			
System clock UTC	FF80h	Unix Timestamp (ID 06h) Unix Timestamp + offset (ID 07h) Unix Timestamp + DST flag (ID 08h) Date (ID 09h) Hour (ID 0Ah) Date/Hour (ID 0Bh)	System clock, UTC			
System clock WALL TIME	FF81h	Unix Timestamp (ID 06h) Unix Timestamp + offset (ID 07h) Unix Timestamp + DST flag (ID 08h) Date (ID 09h) Hour (ID 0Ah) Date/Hour (ID 0Bh)	System clock, WALL TIME			
Timezone name	FF82h	BYTE ARRAY (ID 05h) ASCIIZ string	Timezone name in use			
Firmware version	FF83h	BYTE ARRAY (ID 04h) Unsigned integer, Unsigned integer	Firmware version (Major version, Minor version)			
Slave ID	FF84h	WORD (Unsigned integer)	Instrument slave ID (Modbus)			
Serial number	FF85h	DOUBLEWORD (Unsigned integer)	Instrument serial number			
Event ID	0180h	WORD (Unsigned integer)	Numeric code of the event initiating the sampling: 0 Power down 1 Power up 2 Service startup 3 Scheduled sample 4 Clock changed from 5 Clock changed to 6 Configuration changed 7 Counters reset 8 Runtime error			

The service configuration parameters are stored in the following input variables:

	The service configuration parameters are stored in the following input variables.								
	Load Profile Logging Service – Input Variables								
Name ID Type Range Default Units Description							Description		
	Max data-file size	FF00h	DWORD (ID 02h) Unsigned integer	-	The entire available disk space	Bytes	Maximum size allowed for a data file		
	Max data-file number	0100h	WORD (ID 01h) Unsigned integer	1÷255	60	ı	Maximum number of files on disk allowed		
	Sampling interval	0101h	WORD (ID 01h) Unsigned integer	1÷60	15	Minutes	Sampling interval		

Each configuration profile may contain:

- An *internal allocation* descriptor for each of the following input variables:
 - Max data-file number
 - Max data-file size
 - Sampling interval

The value given by the descriptor is assigned to the corresponding input variable upon service initialisation.

A default value is foreseen for each input variable used by the service; it is used when the variable is not set in the configuration profile.

- An internal allocation descriptor for each of these output variables:
 - System clock, UTC
 - System clock, WALL TIME
 - Timezone name
 - Slave ID
 - Serial number

The value present in the descriptor is not used for these variables, as it will be overwritten by the data generated by the service itself.

Each time a new data file is created, the "load profiles logging" service copies, into the header, the variable definition structure defined by the current configuration profile. The values contained in the internal allocation records relating to output variables are then overwritten – in the data file - by the values of the corresponding variables at creation time.

- An external multiple allocation descriptor for each of the following output variables:
 - System clock, UTC
 - System clock, WALL TIME
 - Event ID
 - Input registers
 - Holding registers

These descriptors define the data area content of the files generated by this service: each data record contains the values of all the variables defined in the external multiple allocation descriptors in the order in which they are listed in the configuration profile. The stored values are those ones that sampled at record creation time. The "load profiles logging" service does not use external single allocation descriptors.

All internal allocation descriptors, defining variables not handled by the service, are copied *verbatim* in the data file.

10.4 Type 4 files

The type 4 files are dedicated to recording of events related to power quality.

The "Events service", when configured, records the following events in its files:

- Power Off. power supply drop below the voltage level ensuring instrument energisation;
- Power On: power supply voltage return;
- Voltage Dip or Voltage Sag: voltage drop of one or more phases (Ph-N for star connection, Ph-Ph
 for delta connection) below a programmed set point for a short number of cycles (programmable
 limit).
- *Undervoltage Start:* same as *Voltage Dip/Sag* but having a duration exceeding the programmed limit in number of cycles.
- *Undervoltage End:* return of one or more line voltages within the programmed set point that generated the *Undevoltage Start* event.
- Voltage Swell: rise of one or more voltages above a programmed set point for a short number of cycles.
- Overvoltage Start: same as the Voltage Swell but having a duration exceeding the programmed limit in number of cycles.
- Overvoltage End: return of one or more line voltages within the programmed set point that generated the Overvoltage Start event.
- Current Peak: rise of one or more line currents above a programmed set point for a short number of cycles.
- Overcurrent Start. same as the Current Peak but having a duration exceeding the programmed limit in number of cycles.
- Overcurrent End: return of one or more line currents within the programmed set point that generated the Overcurrent Start event.
- Config File Access: modification of the configuration file;
- Detection Started.
- Detection Suspended: the measurement and detection functions are suspended, example, in the case of firmware up-grade.
- Detection Resumed: when measurement and detection functions are restarted.

The instrument discriminates Overcurrent Peaks and Overcurrents occurring with positive Active Power (import) and with negative Active Power (export).

It additionally classifies Overcurrents in two categories depending upon their duration and according to a programmable limit in number of cycles.

Overcurrents of duration below a given number of cycles are classified as *Current Peaks* with duration expressed in number of cycles. Overcurrents of duration above the set limit generate two distinct events: an *Overcurrent Start* and an *Overcurrent End*.

Line voltage variations too are discriminated into two categories depending upon their duration and according to a programmable limit in number of cycles.

Voltage variations of duration below a given number of cycles are classified as Voltage Dips/Sags and Voltage Swells Voltage variations above the set duration, generate two distinct events: an Undervoltage Start and an Undervoltage End.

Events are recorded on a number of report-files - minimum 2 - specified by the user. A maximum size (in number of bytes) may be also specified for each file.

Upon reaching the maximum specified file size, events recording continues on a new file.

Upon reaching the specified number of files, oldest files will be overwritten by changing the name suffix (_001, _002, etc).

Whenever one of the above listed events occurs, a record is automatically appended to the report file.

Each record contains:

- 1. a time-stamp (with configurable format) of the sampling time
- 2. a description identifying simultaneously event type and current or voltage phase involved.
 - Power On:
 - Power Off;
 - Voltage Sag / Dip;
 - Undervoltage, Start,
 - Undervoltage, End;
 - Voltage Swell;
 - Overvoltage Start,
 - Overvoltage End;
 - Import Current Peak;
 - Export Current Peak;
 - Import Overcurrent Start,
 - Import Overcurrent End;
 - Export Overcurrent Start,
 - Export Overcurrent End;
- 3. A field indicating the duration, expressed in number of cycles, for Voltage Sags/Dips and Swells and for Current Peaks; it ill be zero for all other events.
- 4. A peak value indicating the maximum value attained by the parameter during the event; its representation is user configurable in the configuration file (DOUBLEWORD or FLOAT IEEE754).

N.B.: The terms used are those contemplated by the IEEE 1159 standards.

Service Configuration 10.4.1

This service makes use of the following output variables:

Events Service – Output variables						
Name	ID	Туре	Mandat.	Description		
Time-stamp Hundredths	0480h	WORD (ID 01h) (Unsigned integer)	YES	Hundredths of second		
Event ID	0481h	WORD (ID 01h) (Unsigned integer)	YES	Numerical code identifying the event		
Event Duration	0482h	WORD (ID 01h) (Unsigned integer)	YES	Event duration (where applicable)		
Peak Value	0483h	DOUBLEWORD (ID 02h) (Unsigned integer)	NO	Peak value (signed integer)		
Peak Value	0484h	DOUBLEWORD (ID 02h) (Unsigned integer)	NO	Peak value (floating point)		
System clock UTC	FF80h	Unix Timestamp (ID 06h) Unix Timestamp + offset (ID 07h) Unix Timestamp + DST flag (ID 08h) Date (ID 09h) Time (ID 0Ah) Date/Time (ID 0Bh)	YES ²	System clock, UTC		
System clock WALL TIME	FF81h	Unix Timestamp (ID 06h) Unix Timestamp + offset (ID 07h) Unix Timestamp + DST flag (ID 08h) Date (ID 09h) Time (ID 0Ah) Date/Time (ID 0Bh)	YES ²	System clock, WALL TIME		
Timezone name	FF82h	BYTE ARRAY (ID 05h) ASCIIZ string	NO	Timezone name in use		
Firmware version	FF83h	BYTE PAIR (ID 04h) Unsigned integer, Unsigned integer	NO	Firmware version in use (Major version, Minor version)		
Slave ID	FF84h	WORD (ID 01h) (Unsigned integer)	NO	Instrument slave ID (Modbus)		
Serial number	FF85h	DOUBLEWORD (ID 02h) (Unsigned integer)	NO	Instrument serial number		
Timezone index	FF87h	WORD (ID 01h) (Unsigned integer)	NO	Timezone index in use		

lt specifies if the variable is, or not, mandatory for service start-up and operation.
Setting of at least one time stamp variable is required for service start up.

The service configuration parameters are stored in the following input variables:

Events Service – Input variables							
Name	ID	Туре	Range	Default	Unit	Description	
Max data-file size	FF00h	DWORD (ID 02h) Unsigned integer	-	All space available on disk	bytes	Maximum admitted size for each data file	
Max data-file number	0400h	WORD (ID 01h) Unsigned integer	1÷255	4	-	Maximum number of files allowed on disk	
Voltage Dip/Sag & Undervoltage Threshold	0401h	DWORD (ID 02h) Unsigned integer	5÷100 % of F.S.	80	V	Triggering threshold for Voltage Dip/sag and Overvoltage start	
Voltage Dip/Sag & Undervoltage Restore Threshold	0402h	DWORD (ID 02h) Unsigned integer	5÷100 % of F.S.	100	V	Restore threshold for Voltage Dip/sag and Overvoltage end	
Voltage Dip/Sag Max Duration	0403h	WORD (ID 01h) Unsigned integer	1-11700 ³	72	cycles	Maximum duration of Voltage Dip/Sag	
Voltage Swell & Overvoltage Threshold	0404h	DWORD (ID 02h) Unsigned integer		240	V	Triggering threshold for Voltage Swell and overvoltage start	
Voltage Swell & Overvoltage Restore Threshold	0405h	DWORD (ID 02h) Unsigned integer		235	V	Restore threshold for Voltage Swell and overvoltage end	
Voltage Swell Max Duration	0406h	WORD (ID 01h) Unsigned integer	1-11700 ³	72	cycles	Maximum duration of Voltage Swell	
Current Peak & Overcurrent Threshold	0407h	DWORD (ID 02h) Unsigned integer		500	A/100	Triggering threshold for current peaks and Overcurrent start.	
Current Peak & Overcurrent Restore Threshold	0408h	DWORD (ID 02h) Unsigned integer		450	A/100	Restore threshold for current peaks and Overcurrent end.	
Current Peak Max Duration	0409h	WORD (ID 01h) Unsigned integer		11700	cycles	Maximum duration of Current peak	
Events detection enable	040Ah	WORD (ID 01h) Unsigned integer		03h	bitmapped	OOO OOO 1 ≡ Voltage Dip/Sag enabled OOO OOO 1 ≡ Voltage Swell enabled OOO OOO	
						1 ≡ Current Peaks enabled	

³ Equivalent to three minutes with 65Hz mains frequency

10.4.2 Example of configuration file: "Events.xmbf"

The file contains only the data indicated in the **Data (hex)** columns

RECORD #0: FILE HEADER					
RECORDS DEFINITION STRUCTURE					
Data (hex) Description					
04	Header size (Bytes)				
EA Data records size (Bytes)					
00 Reserved					
02 ID Flags					

RECORD #1: DATA RECORD						
VARIABLES DEFINITION STRUCTURE						
Data (hex)	Description					
00	Reserved					
80	Descriptor List Size (Bytes)					
08 02 FF 00 00 00 07 F6	Internal var: Max data-file size = 2038 Bytes					
06 01 04 00 00 02	Internal var: Max number of report files = 2					
08 02 04 01 00 00 00 1E	Internal var: Voltage Dip/Sag & Undervoltage Threshold = 30 V					
08 02 04 02 00 00 00 28	Internal var: Voltage Dip/Sag & Undervoltage Restore Threshold = 40 V					
06 01 04 03 00 46	Internal var: Voltage Dip/Sag Max Duration = 70 Cycles					
08 02 04 04 00 00 01 04	Internal var: Voltage Swell & Overvoltage Threshold = 260 V					
08 02 04 05 00 00 00 FA	Internal var: Voltage Swell & Overvoltage Restore Threshold = 250 V					
06 01 04 06 00 46	Internal var: Voltage Swell Max Duration = 70 Cycles					
08 02 04 07 00 00 09 C4	Internal var: Current Peak & Overcurrent Threshold = 2500 A/100					
08 02 04 08 00 00 07 D0	Internal var: Current Peak & Overcurrent Restore Threshold = 2000 A/100					
06 01 04 09 00 46	Internal var: Current Peak Max Duration = 70 Cycles					
OC 07 FF 81 00 00 00 00 00 00 00 00	Internal var: Timestamp (main clock - WALL TIME) = 1 january 1970 0.00.00 +00:00 GMT +00:00 DST					
08 02 FF 85 00 00 00 00	Internal var: Serial number = 0					
06 01 FF 84 00 00	Internal var: Slave ID = 0					
04 87 FF 81	External multiple var: Timestamp (main clock - WALL TIME)					

RECORD #1: DATA RECORD							
04 81 04 80	External multiple var: sec/100						
04 81 04 81	External multiple var: Event						
04 81 04 82	External multiple var: Event duration [Cycles]						
04 82 04 84	External multiple var: Peak Value						
E	EMPTY SPACE						
FF	(104 bytes)						

10.4.3 Type 5 files

The type 5 files are dedicated to the service called "peaks logging service".

This service logs on file the maximum and minim values (peak values) of any of the input or holding registers.

For any register - whose peak values will be logged (target register) a second one can be specified, which will act as "reference register".

The following detection functions are available:

- Absolute minimum value of the target register (the reference register is ignored);
- Absolute maximum value of the target register (the reference register is ignored);
- Absolute minimum value of the *target register* with a *reference register* having positive values;
- Absolute minimum value of the target register with a reference register having positive values;
- Absolute minimum value of the *target register* with a *reference register* having negative values;
- Absolute minimum value of the *target register* with a *reference register* having negative values;

The use of the *reference register* is particularly useful, as example, for discriminating the peak value attained by a parameter in the import quadrant (consumption) from the value attained in the export quadrant (generation). The reference register to be considered to this purpose is always the register designating the import Active Power.

The report file generated by this service contains a data record for each peak value to be stored. Each record contains the absolute maximum (or minimum) value of the corresponding *target register* and a time-stamp of the sampling time. Maximum and minimum values are overwritten when exceeded. The time stamp format is user configurable on the configuration file.

It is possible to program the configuration file for recording other parameters too on top of *target registers*, in order to get a broader picture when the peak was detected.

The maximum number of *target registers* supported by the configuration file is approximately ten (it depends upon the number of internal allocation variables and of external multiple allocation variables.

10.4.4 Service configuration

This service makes use of the following output variables:

Peaks Recording Service – Output variables					
Name	ID	Туре	Description		
System clock UTC	FF80h	Unix Timestamp (ID 06h) Unix Timestamp + offset (ID 07h) Unix Timestamp + DST flag (ID 08h) Date (ID 09h) Time (ID 0Ah) Date/Time (ID 0Bh)	System clock, UTC		
System clock WALL TIME	FF81h	Unix Timestamp (ID 06h) Unix Timestamp + offset (ID 07h) Unix Timestamp + DST flag (ID 08h) Date (ID 09h) Time (ID 0Ah) Date/Time (ID 0Bh)	System clock, WALL TIME		
Timezone name	FF82h	BYTE ARRAY (ID 05h) ASCIIZ string	Name of timezone in use		
Firmware version	FF83h	BYTE PAIR (ID 04h) Unsigned integer, Unsigned integer	Firmware version in use (Major version, Minor version)		
Slave ID	FF84h	WORD (ID 01h) (Unsigned integer)	Instrument slave ID (Modbus)		
Serial number	FF85h	DOUBLEWORD (ID 02h) (Unsigned integer)	Instrument serial number		
Timezone index	FF87h	WORD (ID 01h) (Unsigned integer)	Timezone index in use		

No configuration parameters are required by this service because both *target registers* and *reference registers* are allocated by a single descriptor that specifies the type of detection to be performed by the instrument.

10.4.5 Example of configuration file: "Peaks.xmbf"

The file contains only the data indicated in the **Data (hex)** columns.

RECORD #0: FILE HEADER				
RECORDS DEFINITION STRUCTURE				
Data (hex) Description				
04	Header size (Bytes)			
EA Data records size (Bytes)				
00 Reserved				
02	ID Flags			

RECORD #1: DATA RECORD					
VARIABLES DEFINITION STRUCTURE					
Data (hex)	Description				
00	Reserved				
D4	Descriptor List Size (Bytes)				
0C 07 FF 81 00 00 00 00 00 00 00 00	Internal var: Timestamp (main clock - WALL TIME) = 1 january 1970 0.00.00 +00:00 GMT +00:00 DST				
06 01 FF 84 00 00	Internal var: Slave ID = 0				
08 02 FF 85 00 00 00 00	Internal var: Serial number = 0				
0A CE 00 D6 03 02 01 0C 03 00	External single var: Min U1N [V] with positive P				
0A CE 00 D8 03 02 01 0C 03 00	External single var: Min U2N [V] with positive P				
0A CE 00 DA 03 02 01 0C 03 00	External single var: Min U3N [V] with positive P				
0A CE 00 D6 03 03 01 0C 03 00	External single var: Max U1N [V] with positive P				
0A CE 00 D8 03 03 01 0C 03 00	External single var: Max U2N [V] with positive P				
0A CE 00 DA 03 03 01 0C 03 00	External single var: Max U3N [V] with positive P				
0A CE 00 E2 03 03 01 0C 03 00	External single var: Max I1 [A] with positive P				
0A CE 00 E4 03 03 01 0C 03 00	External single var: Max I2 [A] with positive P				
0A CE 00 E6 03 03 01 0C 03 00	External single var: Max I3 [A] with positive P				
0A CE 00 EA 03 03 01 0C 03 00	External single var: Max P1 [W] with positive P				
0A CE 00 EC 03 03 01 0C 03 00	External single var: Max P2 [W] with positive P				
0A CE 00 EE 03 03 01 0C 03 00	External single var: Max P3 [W] with positive P				
0A CE 00 F6 03 03 01 0C 03 00	External single var: Max S1 [VA] with positive P				
0A CE 00 F8 03 03 01 0C 03 00	External single var: Max S2 [VA] with positive P				
0A CE 00 FA 03 03 01 0C 03 00	External single var: Max S3 [VA] with positive P				
0A CE 00 FC 03 02 00 FC 03 00	External single var: Min PF1 with positive PF1				
0A CE 00 FE 03 02 00 FE 03 00	External single var: Min PF2 with positive PF2				
0A CE 01 00 03 02 01 00 03 00	External single var: Min PF3 with positive PF3				
04 87 FF 81	External multiple var: Timestamp (main clock - WALL TIME)				
EMPTY SPACE					
FF	(20 bytes)				

10.5 Type 7 files

Type 7 files are dedicated to Tariff Energy Counters for time of use tariffs.

They are strictly related to type 6 files, e.g. calendar files, which determine the tariff changeover and the repartition of energies into groups of counters (one group for each tariff).

Each record of the report file is matched to a given tariff. It contains all the energy counters values supported by the instrument.

10.5.1 Service configuration

This service makes use of the following output variables:

	Tariff Energy Counters service – Output variables						
Name	ID	Туре	Mandat.⁴	Description			
System clock UTC	FF80h	Unix Timestamp (ID 06h) Unix Timestamp + offset (ID 07h) Unix Timestamp + DST flag (ID 08h) Date (ID 09h) Time (ID 0Ah) Date/Time (ID 0Bh)		System clock, UTC			
System clock WALL TIME	FF81h	Unix Timestamp (ID 06h) Unix Timestamp + offset (ID 07h) Unix Timestamp + DST flag (ID 08h) Date (ID 09h) Time (ID 08h)		System clock, WALL TIME			
Timezone name	FF82h	BYTE ARRAY(ID 05h) ASCIIZ string	NO	Timezone name in use			
Firmware version	FF83h	BYTE PAIR (ID 04h) Unsigned integer, Unsigned integer	NO	Firmware version in use (Major version, Minor version)			
Slave ID	FF84h	WORD (ID 01h) (Unsigned integer)	NO	Instrument slave ID (Modbus)			
Serial number	FF85h	DOUBLEWORD (ID 02h) (Unsigned integer)	NO	Instrument serial number			
Timezone index	FF87h	WORD (ID 01h) (Unsigned integer)	NO	Timezone index in use			
Tariff	07A0h	WORD (ID 01h) (Unsigned integer)	YES	Tariff index (1-n)			
Ea imp	0780h	QUADWORD (ID 03h)	YES	Import Active energy (high resolution)			

It specifies if the variable is, or not, mandatory for service start-up and operation.

Pag. 121 di 155

⁵ Setting of at least one time stamp variable is required for service start up..

Tariff Energy Counters service – Output variables					
Name	ID	Туре	Mandat.4	Description	
Er ind imp	0781h	QUADWORD (ID 03h)	YES	Import Reactive energy inductive (high resolution)	
Er cap imp	0782h	QUADWORD (ID 03h)	YES	Import Reactive energy capacitive (high resolution)	
Es imp	0783h	QUADWORD (ID 03h)	YES	Import Apparent energy (high resolution)	
Еа ехр	0784h	QUADWORD (ID 03h)	YES	Export Active energy (high resolution)	
Er ind exp	0785h	QUADWORD (ID 03h)	YES	Export Reactive energy Inductive (high resolution)	
Er cap exp	0786h	QUADWORD (ID 03h)	YES	Export Reactive energy capacitive (high resolution)	
Es exp	0787h	QUADWORD (ID 03h)	YES	Export Apparent energy (high resolution)	

The service configuration parameters are stored in the following input variables:

Tariff Energy Counters Service – Input variables						
Name	ID	Туре	Range	Default	Unit	Description
Max data-file size	FF00h	DWORD (ID 02h) Unsigned integer	-	All space available on disk	bytes	Maximum admitted size for each data file
Refresh Period	0700h	WORD (ID 01h) Unsigned integer	065535	0	s	Refresh interval of the report file. When not specified, it refreshes at each time band changeover or whenever the serial port requires a file reading.

10.5.2 Reset

The content of a report file may be reset by simply removing the file. This operation will generate a temporary service stall of few tenths of sec.; after checking and validation of the configuration files a new report file will be generated.

10.5.3 Example of configuration file: "EnergyCounters.xmbf" The file contains only the data indicated in the **Data (hex)** columns

The order of the external multiple allocation variables can be changed however the type cannot be changed (storage of counters in low resolution – e.g. in FLOAT IEEE754 format – is not allowed. All external variables indicated as mandatory on the table below must be included in the descriptors list.

RECORD #0: FILE HEADER			
RECORDS DEFINITION STRUCTURE			
Data (hex) Description			
04	Header size (Bytes)		
EA	Data records size (Bytes)		
00	Reserved		
02	ID Flags		

RECORD #1: DATA RECORD				
VARIABLES DEFINITION STRUCTURE				
Data (hex) Description				
00	Reserved			
26	Descriptor List Size (Bytes)			
04 81 07 A0	External multiple var: Tariff			
04 83 07 80	External multiple var: Ea imp [Wh/10]			
04 83 07 81	External multiple var: Er ind imp [varh/10]			
04 83 07 82	External multiple var: Er cap imp [varh/10]			
04 83 07 83	External multiple var: Es imp [VAh/10]			
04 83 07 84	External multiple var: Ea exp [Wh/10]			
04 83 07 85	External multiple var: Er ind exp [varh/10]			
04 83 07 86	External multiple var: Er cap exp [varh/10]			
04 83 07 87 External multiple var: Es exp [VAh/10]				
EMPTY SPACE				

RECORD #1: DATA RECORD						
FF FF FF FF FF FF FF FF						
FF FF						
FF FF FF FF FF FF FF FF FF						
FF FF FF FF FF FF FF FF FF FF FF						
FF FF						
FF FF FF FF FF FF FF FF FF						
FF FF						
FF FF FF FF FF FF FF FF FF						
FF FF						
FF FF FF FF FF FF FF FF						
FF FF						
FF FF FF FF FF FF FF FF FF						
FF FF FF FF FF FF FF FF FF FF FF						
FFFF						
FF FF FF FF FF FF FF FF FF	(194 bytes)					
FF FF						
FF FF FF FF FF FF FF FF						
FF FF						
FF FF						
FF FF FF FF FF FF FF FF						
FF FF						
FF FF FF FF FF FF FF FF FF						
FF	(194 bytes)					

10.6 Type 8 files

Type 8 files are dedicated to the storage of *Tariff Maximum Demands* for time of use tariffs.

They are strictly related to type 6 files, e.g. calendar files, that determine the tariff changeover and the repartition of Maximum demand into groups (one group for each tariff).

For further information please refer to "Type 6 files".

Each record of the report file is matched to a given tariff. It contains all the Maximum demand values supported by the instrument.

10.6.1 Service configuration

This service makes use of the following output variables:

Tariff Maximum Demands Service - Output variables						
Name	ID	Туре	Mandat.	Description		
System clock UTC	FF80h	Unix Timestamp (ID 06h) Unix Timestamp + offset (ID 07h) Unix Timestamp + DST flag (ID 08h) Date (ID 09h) Time (ID 0Ah) Date/Time (ID 0Bh)	YES ⁷	System clock, UTC		
System clock WALL TIME	FF81h	Unix Timestamp (ID 06h) Unix Timestamp + offset (ID 07h) Unix Timestamp + DST flag (ID 08h) Date (ID 09h) Time (ID 08h)	YES ⁷	System clock, WALL TIME		
Timezone name	FF82h	BYTE ARRAY(ID 05h) ASCIIZ string	NO	Timezone name in use		
Firmware version	FF83h	BYTE PAIR (ID 04h) Unsigned integer, Unsigned integer	NO	Firmware version in use (Major version, Minor version)		
Slave ID	FF84h	WORD (ID 01h) (Unsigned integer)	NO	Instrument slave ID (Modbus)		
Serial number	FF85h	DOUBLEWORD (ID 02h) (Unsigned integer)	NO	Instrument serial number		
Timezone index	FF87h	WORD (ID 01h) (Unsigned integer)	NO	Timezone index in use		
Tariff	08A0h	WORD (ID 01h) (Unsigned integer)	YES	Tariff index (1-n)		

⁶ It specifies if the variable is, or not, mandatory for service start-up and operation.

Pag. 125 di 155

⁷ Setting of at least one time stamp variable is required for service start up.

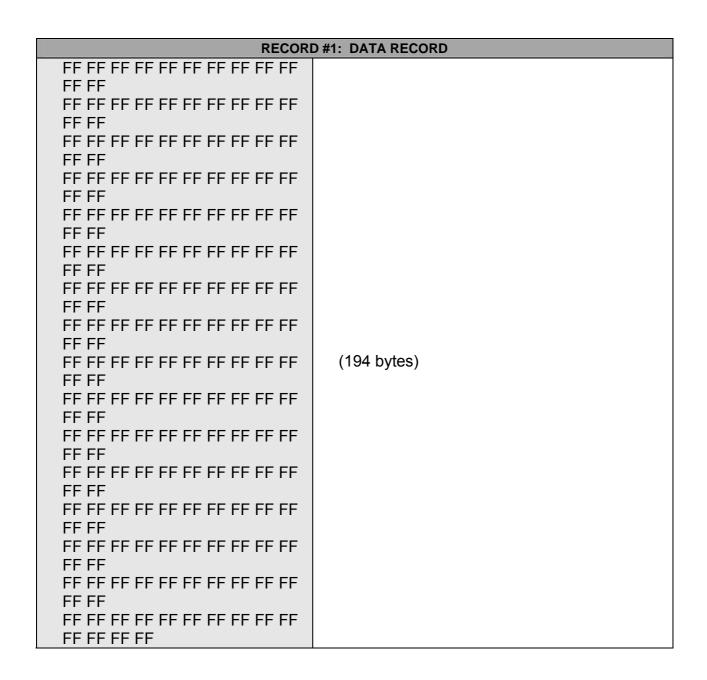
Tariff Maximum Demands Service - Output variables					
Name	ID	Туре	Mandat.	Description	
MD P imp	0880h	DOUBLEWORD (ID 02h)	YES	Maximum Demand Import Active Power	
MD Q ind imp	0881h	DOUBLEWORD (ID 02h)	YES	Maximum Demand Import Reactive power (inductive)	
MD Q cap imp	0882h	DOUBLEWORD (ID 02h)	YES	Maximum Demand Import Reactive power (capacitive)	
MD S imp	0883h	DOUBLEWORD (ID 02h)	YES	Maximum Demand Import Apparent power	
MD P exp	0884h	DOUBLEWORD (ID 02h)	YES	Maximum Demand Export Active Power	
MD Q ind exp	0885h	DOUBLEWORD (ID 02h)	YES	Maximum Demand Export Reactive power (inductive)	
MD Q cap exp	0886h	DOUBLEWORD (ID 02h)	YES	Maximum Demand Export Reactive power (capacitive)	
MD S exp	0887h	DOUBLEWORD (ID 02h)	YES	Maximum Demand Export Apparent power	

The service configuration parameters are stored in the following input variables:

Tariff Maximum Demands Service – Input variables						
Name	ID	Type	Range	Default	Unit	Description
Max data-file size	FF00h	DWORD (ID 02h) Unsigned integer	-	All space available on disk	bytes	Maximum admitted size for each data file
Refresh Period	0800h	WORD (ID 01h) Unsigned integer	065535	0	S	Refresh interval of the report file. When not specified, it refreshes at each time band changeover or whenever the serial port requires a file reading.

10.6.2 Reset

The content of a report file may be reset by simply removing the file. This operation will generate a temporary service stall of few tenths of sec.; after checking and validation of the configuration files a new report file will be generated.


10.6.3 Example of configuration file: "MaximumDemands.xmbf"

The file contains only the data indicated in the **Data (hex)** column

The order of the external multiple allocation variables can be changed subject however to the presence in the descriptors list of the mandatory variables as indicated by the tables.

RECORD #0: FILE HEADER			
RECORDS DEFINITION STRUCTURE			
Data (hex) Description			
04	Header size (Bytes)		
EA	Data records size (Bytes)		
00	Reserved		
02	ID Flags		

RECORD #1: DATA RECORD				
VARIABLES DEFINITION STRUCTURE				
Data (hex) Description				
00	Reserved			
26	Descriptor List Size (Bytes)			
04 81 08 A0	External multiple var: Tariff			
04 82 08 80	External multiple var: MD P imp [W]			
04 82 08 81	External multiple var: MD Q ind imp [var]			
04 82 08 82	External multiple var: MD Q cap imp [var]			
04 82 08 83	External multiple var: MD S imp [VA]			
04 82 08 84	External multiple var: MD P exp [W]			
04 82 08 85	External multiple var: MD Q ind exp [var]			
04 82 08 86	External multiple var: MD Q cap exp [var]			
04 82 08 87 External multiple var: MD S exp [VA]				
EMPTY SPACE				

10.6.4 Clock / Calendar

X3M contains a clock/calendar with supporting the timezones and the transitions rules for automatic Daylight Saving Time and Standard Time change.

The following conventional denominations are used:

- Coordinated Universal Time (UTC), formerly known as GMT (Greenwich Mean Time): this is independent from the geographic location (hence "universal");
- Standard Time (ST): this is the local time to a given timezone, based on sun cycles ("solar time");

- Daylight Saving Time (DST): it is the local time to a given timezone when an offset (DST offset) is applied to ST. This offset is usually applied (by local laws and regulations) to increase the daylight hours during summer season.
- Wall time: this is the current clock time: it matches either ST or DST depending on the period of the year.

The difference between ST and UTC is called GMT offset.

Summarizing:

GMT offset = Standard Time – UTC
Wall Time = Standard Time + DST offset = UTC + GMT offset + DST offset

The instrument RTC (Real Time Clock) maintains the following time information:

- UTC Date/Time;
- Timezone ID;

The X3M, in this way, uses its internal UTC timing to compute the local time (Wall Time) anywhere on earth.

10.6.4.1 Timezones

The pertinent timezone is set by specifying a numeric *timezone index*. The correspondence between timezone index and standard name is listed in the table available on chapter "Set up" paragraph "Clock Set up".

The X3M embeds a database of *timezone rules* that enables the instrument to determine the local GMT offset and DST offset at a given time for any of the available timezones and to consequently covert them into Universal and Local time.

The database with the *timezone rules* is compiled starting from the package published by *elsie.nci.nih.gov* (*tzdataXXXXX.tar.gz*) and it is embedded in the instrument firmware therefore an update of the timezone rules requires upgrading of the firmware.

10.6.4.2 Files

File FF.02 contains the timezones the instrument is supporting – in id order (see table). FF.02 is a structured homogeneous file identified as follows:

- Name = name of the file by elsie.nci.nih.gov (e.g. "tzdata2004g") used to build the timezone rules of the X3M database.
- Creation Date/Time = date/time of database creation
- Modification Date/Time = date/time of database compilation

The n^{th} record of the file contains information about the timezone with index n-1.

The service that generates the FF.02 file uses the following output variables:

System clock – Output Variables allocated in file FF.02					
Name	ID	Туре	Description		
Timezone name	FF82h	BYTE ARRAY (ASCIIZ string)	Timezone name in use.		
Firmware version	FF83h	BYTE PAIR (Unsigned integer, Unsigned integer)	Firmware version (Major version, Minor version)		
Slave ID	FF84h	WORD (Unsigned integer)	Instrument slave ID (Modbus)		
Serial number	FF85h	DOUBLEWORD (Unsigned integer)	Instrument serial number		

10.6.4.3 Clock related Modbus registers

Holding Registers 140 to 169 are used for clock programming by Modbus protocol via serial port. See chapter 9 for details.

10.6.5 Upgrading the firmware

Two modules, called *loader* and *application*, compose the X3M firmware:

- The application module contains all the codes enabling the measurement, data logging, display and communication functions.
- The loader implements the functions for programming the flash memory containing the firmware and makes possible its installation and its upgrade.

The X3M firmware is released as binary files whose name has the x3m extension. The file name also contains the version and an identification code of the module (the ID is an abbreviation of the module name). So, for instance:

- X3M DL-02.01.X3M: file contains the *loader* module, version 2.01;
- **X3M_APP-01.00.X3M**: file contains the *application* module, version 1.00;
- X3M_DL-02.01;X3M_APP-01.00.X3M: file containing both modules.

The firmware upgrade is performed using the Modbus protocol through any supported communication interface (presently RS232 and RS485).

The flash memory access to the firmware area is possible through files FF.00 and FF.01.

File FF.00 supports read only access to the firmware area: by reading this file it is possible to obtain a copy of the installed firmware (FF.00 contains both the loader and the application module).

FF.01 supports read and write access to a backup area used for software upgrades. At instrument power on and after each reset, the loader checks (through an algorithm) whether the backup area contains a <u>valid</u> copy of one of the firmware modules (*loader* and/or *application*).

If the version of one of the modules differs from the one currently installed (as determined by the file checksum) the loader upgrades the running firmware automatically.

To upgrade a new firmware, therefore, it is sufficient to copy, in the backup area, the content of the binary shipped Electrex and then to power down and restart Before sending the reset command, it is recommended to check that the backup area actually contains a copy of the new firmware module, so as to prevent possible problems during the file transfer phase. This check done reading the 00.FF he by After resetting the instrument, the upgrade status can be verified ether by checking the outcome string of the Report Slave ID command, or by reading the name of the FF.00 file in the 00.FF directory relating to the installed modules.

Problems in the file transfer process (to the backup area) will not effect the instrument operations. However, when writing to file FF.01, all measurement functions are stalled.

The format of FF.00 and FF.01 files is as follows:

Files FF.00 and FF.01 format							
Record Number	Record Size	Field size	Field type	Field description	Note		
0	2 bytos	1 byte	Unsigned integer	Header size	Fixed value: equals 2		
	2 bytes	1 byte	Unsigned integer	Data record size	Fixed value: equals 238		
n (1 <= n <= 1102)	238 bytes	Segment compri	sing bytes from position (n-nary file (executable) contain	Raw data			

11 The XMBF.EXE utility (Electrex ModBus File)

XMBF --[operation type] --[communication port] –[address]

--[protocol format] --[file number] --[output format]

[destination]

Example:.

--fnum=0101 --html

11.1 Commands for PC handling of the files of the X3M memory.

In order to allow a simple and easy management of the standard MobBus files available in the memory of the X3M, a specific program was developed for file writing and reading that supports the "Read general file" and "Write general file" ModBus commands. For further ease of operation, the program supports also the file conversion to various formats with no need of specifically developed tools.

The same commands may also be invoked by other programs that require the data with no need of specific drivers development.

The XMBF.EXE is run from the DOS shell in command line mode by specifying the operation parameters as below indicated:

```
[operation type]
                         --read
                                          \rightarrow download
                                          \rightarrow upload
                         --write
                                          → delete
                         --del
                                          \rightarrow create
                         --create
                         --reboot
                                          → instrument restart from zero
                         --ip=<ip address> → Instrument IP address.
[communication port]
                         --ser=<com port>,<com speed>,<bits N°>, <parity>,<stop bits>
                              <com port> → PC communication port, example COM1
                              <com speed>→ transmission speed, example 38400
                              <parity>
                                          → parity control, example n
                              <stop bits> → stop bit number, example 2
[address]
                                                 → instrument address
                         --addr=<address>
[protocol format]
                         --mascii
                                          → ModBus ASCII (default RTU if not specified)
[file number]
                         --fnum=<file number> → identification number (exadecimal format) of
                                             the file in memory, example --fnum=07
[file name]
                         --fname=<file name> → file or origin directory from PC
[output format]
                                          → saves the file to PC in text format
                         --txt
                                          → saves the file to PC in HEX format
                         --hex
                                          → file in HTML format
                         --html
                                          → file in binary format
                         --xmbf
                                          → file in comma separated value format compatible with
                         --xls
                                             spreadsheet programs like Excel, etc..
                         no parameter
                                          → print to screen in TXT format
```

--dname=\<file name> → name of the destination file.

 \rightarrow path of the destination directory.

--dpath=\<directory tree>

C:\Programs\X3M\XMBF --read --ser=com1,38400,8,n,2 --addr=27

It executes the program resident in C:\Programs\X3M and it transfers the 0101 file (load profiles) from the instrument at address 27 to PC via the serial port Com1 38400 bps 8 data bits, no parity, 2 stop bits and it saves it to a file named (0101)Loadprofiles.html in HTML format.

11.1.1 Short commands

The operating parameters may be written in short format too by using one letter only followed directly by the value with no = sign. The short commands table is given below.

ip	\rightarrow	-i
ser	\rightarrow	-s
addr	\rightarrow	-a
read	\rightarrow	-r
write	\rightarrow	-w
del	\rightarrow	-d
fnum	\rightarrow	-f
xmbf	\rightarrow	-x
txt	\rightarrow	-t
html	\rightarrow	-h
hex	\rightarrow	-H
xls	\rightarrow	-1
fname	\rightarrow	-F
create	\rightarrow	-c
xmodem	\rightarrow	-x
mascii	\rightarrow	-A
reboot	\rightarrow	-R
dpath	\rightarrow	- p
dfile	\rightarrow	-f

11.2 Operation type

These commands establish the operation that is required to be executed.

11.2.1 -- read Download

This command reads a file from the instrument flash disk by using the Modbus "read general file"

The file is read in the original binary format and saved, as is, into the working directory.

It is then converted to a destination file following the instructions of the Output Format.

If no other instructions are given, the file is converted to a TXT file and displayed on the computer screen.

This command does not change the content of the instrument flash disk.

11.2.2 --write Upload

This command allows to write a file taken from the PC disk into the instrument flash disk. It must be used only for uploading the configuration files of the various services or the calendar files.

The file name must contain, to its beginning, the number of the destination file and the name that will be assigned to the report files generated by the service.

The upload file must be in xmbf (binary) format or in HEX format (in this case it will be automatically converted to binary by the --write command).

The command may only overwrite existing file(s) of same size; it will be otherwise necessary to cancel it first in the case of different size,

In the case of up load of a file not existing in the instrument, the --create command must be added to the command line.

It may be used for firmware dates of the instrument by uploading the file number (FF01), after its cancellation. A --reboot command or, alternatively, an instrument powering down and up again, are required in order to render operative the new firmware.

11.2.3 **--del** Delete

It removes the file having the number that is specified. This command is executed directly with no request of confirmation and maximum care should therefore be used.

The "Delete" command allows to remove a list of files too. The file numbers to be removed must be specified on the same command line with comma separation.

Example: -fnum=0400,0100,FE02 deletes the 0400 file (i.e. the configuration file of Service 4), the 0100 file (i.e. configuration of the load profile service) and the FE02 file (i.e. a file configured and saved by the user).

The "Delete" command may be applied for removal of a directory file too (example: --fnum=01) and this will automatically remove all the files of the specified directory

WARNING: the "Delete" command with --fnum=0 will remove all the files in memory.

11.2.4 **--create** Create

Command to be used together with the –write command when the file to be written does not exists.

11.2.5 **--reboot** Instrument restart from zero

This command generates an instruction to the instrument that simulates a power off and a power on. It is used in order to render operative a firmware up-grade.

11.3 Communication port

The communication may be direct only via the following communication ports.

11.3.1 IP Address

It uses an Ethernet connexion and the IP address where the instrument is located must be specified. The protocol used is Modbus over IP.

11.3.2 Com Port

It uses one of the physical ports of a PC that is programmed with the specified communication speed. In the case of communication via a Modem, the connexion must be established separately.

11.4 Protocol format

Modbus supports both the RTU 8 bit format and the ASCII format. The instrument may be configured to both formats.

The program supports the RTU format as default setting but it may be set to support the ASCII format by means of the "--mascii" command.

11.5 Address

It identifies the Modbus address that is assigned to the instrument. The default factory-set address is 27.

11.6 File number

It's the number, in HEX format, of the file that needs to be downloaded. The file number 0000H (a simple 0 is also accepted) represent the directory of the flash disk.

11.7 File Name

The file name identifies the name of the file that needs to be uploaded to the instrument.

The name must indicate (fnum)Servicename where:

(fnum) is the file number of the instrument where one requires to write the content of the

origin file from the PC.

Servicename is the name that will be assigned to the files generated by the

service being configured.

The upload file must be in xmbf (binary) format or in HEX format (in this case it will be converted to binary during the transfer).

11.8 Destination

It allows to establish a destination directory for the download file, different than the resident directory of the program. It also allows to change the file name with respect to the default name that is automatically generated by the program, that is (fnum)Servicename, example (0101)Loadprofiles.

11.8.1 --dpath=DestinationPath

It specifies the destination folder of the files. The path may be absolute or relative. A new folder is automatically created if not existing.

11.8.2 --dfile=DestinationFileName

It forces a name for the destination file. If no parameter is specified, the program uses the same name used in the instrument filesystem.

11.9 Output format

This command gives the possibility of rendering a file content into a structured and commented format for easier readability. The file structure is the one better described in the instrument manual; it is divided in records with the first one describing the structure of the file itself, the others records being the data.

The comments, or variable descriptors, used are taken from the X3M_01.map file that is resident in the same folder of the xmbf.exe file.

The file downloaded from the instrument can be saved in various formats according to the user needs.

11.9.1 TXT Output

A text file is generated where each paragraph corresponds to one record. The "File header" corresponds to the record 0 of the file.

```
File Modfice Formato Visualizza ?

File: (0000)Directory

***** File Header *****

Header size = 46 bytes

Data record size = 64 bytes

File ID = 12

Firmware version: major = 1, minor = 02

***** Data record #1 ****

File number = 0100 hex

Records size: header = 4 Bytes, data = 234 Bytes

File ID: ID (Reserved) = 0, File type = Non-homogeneous cfg file

Creation time (UTC) = 8 aprile 2005 16.08.58 +01:00 GMT +01:00 DST

Last modification time (UTC) = 8 aprile 2005 16.08.58 +01:00 GMT +01:00 DST

Size = 238 Bytes

Status: File status = 00 hex, Service status = 00 hex

Name = loadprofiles

***** Data record #2 *****

File ID: ID (Reserved) = 0, File type = Homogeneous report file

Creation time (UTC) = 8 aprile 2005 16.08.59 +01:00 GMT +01:00 DST

Last modification time (UTC) = 8 aprile 2005 16.08.59 +01:00 GMT +01:00 DST

Last modification time (UTC) = 8 aprile 2005 16.08.59 +01:00 GMT +01:00 DST

Last modification time (UTC) = 8 aprile 2005 16.08.59 +01:00 GMT +01:00 DST

Last modification time (UTC) = 8 aprile 2005 16.08.59 +01:00 GMT +01:00 DST

Size = 312 Bytes

Status: File status = 00 hex, Service status = 00 hex

Name = loadprofiles

*****

******

Data record #3 *****

File ID: ID (Reserved) = 0, File type = Homogeneous report file Creation time (UTC) = 9 aprile 2005 10.22.07 +01:00 GMT +01:00 DST

Last modification time (UTC) = 9 aprile 2005 10.22.07 +01:00 GMT +01:00 DST

Last modification time (UTC) = 9 aprile 2005 10.22.07 +01:00 GMT +01:00 DST

Last modification time (UTC) = 9 aprile 2005 10.22.00.00 +01:00 GMT +01:00 DST

Size = 3790 Bytes

Status: File status = 00 hex, Service status = 00 hex

Name = loadprofiles
```

The example shows a TXT obtained by reading the 0000H directory file.

11.9.2 Print to screen

Should nothing be specified, the same output format will be displayed on the PC screen.

11.9.3 HEX output

An hexadecimal file is generated and saved, with separate and distinctly commented records

```
(0401)Events_comment.hex - Blocco note
                                        Modifica Formato Visualizza
                                                                                                    (Record 0)
                                                                                     04 00
02 08
02 04
09 2D
                                                                                                                                              7C 04 87 FF
02 04 01 00
05 00 00 00
B4 0C 07 FF
                                                                                                                                                                                                                                                                     81
00
EB
81
                                                                                                                                                                                                                                                                                                  04
00
06
42
                                                                                                                                                                                                                                                                                                                              81
50
01
52
                                                                                                                                                                                                                                                                                                                                                           04
08
04
BC
                                                                                                                                                                                                                                                                                                                                                                                        80
02
06
93
                                                                                                                                                                                                                                                                                                                                                                                                                    04
04
2D
00
                                                                                                                                                                                                                                                                                                                                                                                                                                                 81
02
84
3C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              04
00
08
00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           81
00
02
3C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          04
00
04
08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      81
64
07
02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   04
06
00
FF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                82
01
00
85
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            08
04
01
00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         02
03
F4
04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FF
2D
08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00
B4
02
F6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00
08
04
06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00 05
02 04
08 00
01 FF
                                                                                  09 2D 84 0C 07 FF 81 42

records (From 1 up)
93 00 3C 00 3C 00 1E 00
93 00 3C 00 3C 00 3C 00
0E 00 3C 00 3C 00 00
0EA 00 3C 00 3C 00 1B 00
98 00 3C 00 3C 00 1B 00
98 00 3C 00 3C 00 1B 00
99 00 3C 00 3C 00 12 00
0A9 00 3C 00 3C 00 14 00
0AA 00 3C 00 3C 00 14 00
0AA 00 3C 00 3C 00 28 00
9C 00 3C 00 3C 00 28 00
0G 00 3C 00 3C 00 00 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1 05/04/05 16.28 30 Config file modified 0 2 05/04/05 16.28 60 Detection started 0 3 05/04/05 16.29 0 Power OFF 0 4 05/04/05 16.29 78 Power OF 0 5 05/04/05 16.29 24 Detection started 0 6 05/04/05 16.29 24 Detection suspended 0 7 05/04/05 16.49 40 Detection suspended 0 8 05/04/05 16.49 40 Detection resumed 0 8 05/04/05 16.49 40 Detection resumed 0 10 05/04/05 16.49 40 Detection resumed 0 10 05/04/05 16.49 40 Overvoltage V1N 136 11 05/04/05 16.49 40 Overvoltage V2N 136 12 05/04/05 16.49 40 Overvoltage V3N 136 13 05/04/05 19.05 0 Power OFF 0 14 06/04/05 9.31 58 Power ON 0 15 06/04/05 9.31 2 Detection started 0 16 06/04/05 9.35 76 Power ON 0 18 06/04/05 9.35 8 Detection started 0
                             Data
52 BC
52 BC
52 BC
52 BC
52 C1
53 AC
53 AD
53 AD
                                                                                                                                                                                                                                                                                                                              3B 00
38 00
37 00
38 00
37 00
38 00
39 00
12 00
13 00
14 00
36 00
37 00
38 00
38 00
38 00
38 00
```

The comments are identified by the // characters.

Should this be a configuration file, the data part may be edited with Notepad, reconverted into a binary file by means of the hex2bin command and stored in the instrument by means of an Upload command.

This is the procedure that enables to modify the configuration of the various Services supported by the instrument.

The comments will be automatically eliminated during the re-conversion.

11.9.4 HTML Output

A browser readable HTML file is generated and saved.

(0401)Events

Size: 1390 bytes

Creation time (WALL): lunedì 6 giugno 2005 16.36.12 (GMT: +01.00, DST: +01.00)

Last modification time (WALL): mercoledì 8 giugno 2005 22.06.36 (GMT: +01.00, DST: +01.00)

File Header - Input variables			
Variable	Value		
Max data-file size [Bytes]	1400		
Max number of report files	2		
Voltage loss threshold [V]	80		
Voltage restore threshold [V]	90		
Voltage interruption max duration [Cycles]	70		
Overvoltage threshold [V]	260		
Overvoltage restore threshold [V]	250		
Overvoltage max duration [Cycles]	70		
Overcurrent threshold [A/100]	600		
Overcurrent restore threshold [A/100]	550		
Overcurrent max duration [Cycles]	70		

File Header - Output variables			
Variable	Value		
Timestamp (main clock - WALL TIME)	6 giugno 2005 16.36.12 +01:00 GMT +01:00 DST		
Serial number	307936		
Slave ID	206		

	Data records					
Record number	Timestamp (main clock - WALL TIME)	Timestamp hundreds [sec/100]	Event	Event duration [Cycles]	Peak Value	
1	6 giugno 2005 16.36.12 +01:00 GMT +01:00 DST	22	Detection resumed	0	0,00000	
2	6 giugno 2005 16.36.12 +01:00 GMT +01:00 DST	22	Export Overcurrent restore I1	0	387,68225	
3	6 giugno 2005 16.36.12 +01:00 GMT +01:00 DST	22	Export Overcurrent restore I2	0	387,83646	
4	6 giugno 2005 16.36.12 +01:00 GMT +01:00 DST	22	Export Overcurrent restore I3	0	387,65826	
5	6 giugno 2005 16.36.12 +01:00 GMT +01:00 DST	22	Import Overcurrent I1	0	0,00000	
6	6 giugno 2005 16.36.12	22	Import Overcurrent I2	0	0,00000	

	+01:00 GMT +01:00 DST				
7	6 giugno 2005 16.36.12 +01:00 GMT +01:00 DST	22	Import Overcurrent I3	0	0,00000
8	6 giugno 2005 17.47.34 +01:00 GMT +01:00 DST	52	Import Overcurrent restore I1	0	52,71437
9	6 giugno 2005 17.47.34 +01:00 GMT +01:00 DST	52	Import Overcurrent restore I2	0	53,13522
10	6 giugno 2005 17.47.34 +01:00 GMT +01:00 DST	52	Import Overcurrent restore I3	0	53,01883
11	6 giugno 2005 17.47.35 +01:00 GMT +01:00 DST	0	Power OFF	0	0,00000
12	7 giugno 2005 8.17.33 +01:00 GMT +01:00 DST	68	Power ON	0	0,00000
13	7 giugno 2005 8.17.34 +01:00 GMT +01:00 DST	16	Detection started	0	0,00000
14	7 giugno 2005 8.17.34 +01:00 GMT +01:00 DST	16	Import Overcurrent I1	0	0,00000
15	7 giugno 2005 8.17.34 +01:00 GMT +01:00 DST	16	Import Overcurrent I2	0	0,00000
16	7 giugno 2005 8.17.34 +01:00 GMT +01:00 DST	16	Import Overcurrent I3	0	0,00000
17	7 giugno 2005 8.36.30 +01:00 GMT +01:00 DST	94	Detection suspended	0	0,00000
18	7 giugno 2005 8.36.38 +01:00 GMT +01:00 DST	16	Detection resumed	0	0,00000
19	7 giugno 2005 8.37.17 +01:00 GMT +01:00 DST	72	Detection suspended	0	0,00000
20	7 giugno 2005 8.42.18 +01:00 GMT +01:00 DST	40	Detection resumed	0	0,00000
21	7 giugno 2005 9.08.36 +01:00 GMT +01:00 DST	54	Detection suspended	0	0,00000
22	7 giugno 2005 9.08.38 +01:00 GMT +01:00 DST	4	Detection resumed	0	0,00000
23	7 giugno 2005 9.08.38 +01:00 GMT +01:00 DST	4	Import Overcurrent restore I1	0	523,47253
24	7 giugno 2005 9.08.38 +01:00 GMT +01:00 DST	4	Import Overcurrent restore I2	0	523,73511
25	7 giugno 2005 9.08.38 +01:00 GMT +01:00 DST	4	Import Overcurrent restore I3	0	523,86774
26	7 giugno 2005 9.08.38 +01:00 GMT +01:00 DST	4	Export Overcurrent I1	0	0,00000
27	7 giugno 2005 9.08.38 +01:00 GMT +01:00 DST	4	Export Overcurrent I2	0	0,00000

The example shows parts of an event file in HTML format.

11.9.5 XLS output type

This type of output generates an XLS-formatted file suitable for Microsoft $\mathsf{EXCEL}^{@}$ or for import by other spreadsheet programs.

The file format is as below indicated; the example refers to a Load Profile file.

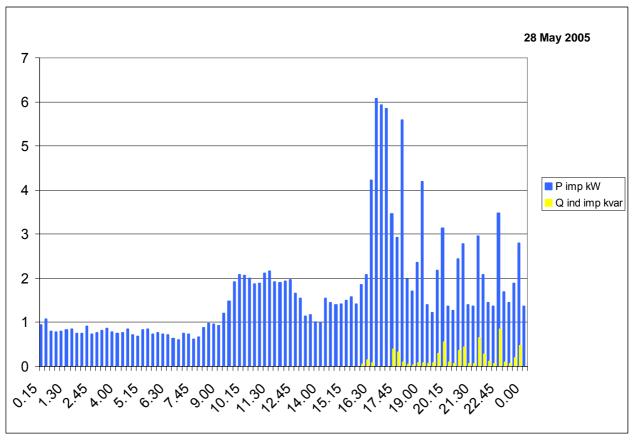
(0120)LoadProfiles										
Size (bytes):	7416									
Creation time (WALL):	28/05/2005 0.00									
Last modification time (WALL):	29/05/2005 0.00									
File Header - Input variables Variable		Value								
Max data-file number	60	value								
Sampling interval [min]	15									
Max data-file size [Bytes]	65535									
File Header - Output variables										
Variable		Value								
	28 may 2005 0.00.00									
Timestamp (main clock - WALL TIME)	+01:00 GMT +01:00 DST									
Serial number	300001									
Slave ID	204									
Data records		- ·					_		_	_
December 1	Timestamp (main clock -	Trigger	Ea imp	Er ind imp	Er cap imp	Es imp	Ea exp	Er ind exp	Er cap exp	Es exp
Record number	WALL TIME) 1 28/05/2005 0.00	event 3	[Wh/10] 14428124	[varh/10] 392187	[varh/10] 2651429	[VAh/10] 14910357	[Wh/10] 0	[varh/10] 0	[varh/10] 0	[VAh/10] 0
	2 28/05/2005 0.15	3	14430481	392187	2652197	14912845	0	0	0	0
	3 28/05/2005 0.30	3	14433148	392187	2652883	14915604	0	ő	ő	0
	4 28/05/2005 0.45	3	14435144	392187	2653698	14917762	0	Ō	Ö	0
	5 28/05/2005 1.00	3	14437105	392187	2654428	14919858	0	0	0	0
	6 28/05/2005 1.15	3	14439101	392187	2655082	14921963	0	0	0	0
	7 28/05/2005 1.30	3	14441182	392187	2655727	14924143	0	0	0	0
	8 28/05/2005 1.45	3	14443281	392187	2656443	14926362	0	0	0	0
	9 28/05/2005 2.00	3	14445152	392187	2657197	14928385	0	0	0	0
	0 28/05/2005 2.15	3	14447022	392187	2657934	14930398	0	0	0 0	0
1 1:		3 3	14449287 14451134	392188 392188	2658387 2659204	14932712 14934732	0	0	0	0
 1:		3	14451134	392188	2659204	14934732	0	0	0	0
1,		3	14455038	392188	2660620	14938893	0	0	0	0
1:		3	14457206	392188	2661328	14941178	0	ő	ŏ	0
	6 28/05/2005 3.45	3	14459146	392188	2662114	14943275	0	0	0	0
1	7 28/05/2005 4.00	3	14461012	392188	2662878	14945295	0	0	0	0
1		3	14462930	392188	2663630	14947360	0	0	0	0
1!		3	14465031	392188	2664231	14949547	0	0	0	0
2		3	14466831	392188	2664977	14951501	0	0	0	0
2		3	14468538	392188	2665771	14953385	0	0	0	0
2 2		3	14470591	392188	2666437	14955547	0	0	0 0	0 0
2.		3 3	14472698 14474531	392188 392188	2667226 2668068	14957800 14959821	0	0	0	0
2		3	14476423	392188	2668822	14961859	0	0	0	0
2		3	14478246	392188	2669611	14963848	0	0	Ö	0
2		3	14480031	392188	2670255	14965749	0	0	0	0
2	8 28/05/2005 6.45	3	14481599	392188	2671001	14967489	0	0	0	0
2		3	14483086	392188	2671772	14969167	0	0	0	0
3		3	14484945	392188	2672572	14971197	0	0	0	0
3		3	14486767	392188	2673221	14973136	0	0	0	0
3:		3 3	14488313 14489994	392188	2674077 2674781	14974905 14976733	0	0	0	0 0
3		3	14492169	392188 392188	2675321	14978793	0	0	0	0
3:		3	14494615	392188	2675636	14981460	0	0	0	0
3		3	14497020	392188	2675985	14983892	0	Ö	Ö	Ö
3		3	14499346	392188	2676444	14986264	0	Ö	Ö	0
3	8 28/05/2005 9.15	3	14502360	392188	2676808	14989305	0	0	0	0
3		3	14506043	392188	2677062	14992998	0	0	0	0
4		3	14510854	392188	2677670	14997849	0	0	0	0
4		3	14516062	392188	2678126	15003079	0	0	0	0
4.		3	14521228	392188	2678446	15008257	0	0	0	0
4. 4.		3 3	14526235 14530906	392188 392188	2678788 2679179	15013277 15017966	0 0	0 0	0 0	0 0
4-		3	14535620	392188	2679179	15017966	0	0	0	0
4		3	14540896	392190	2680364	15022720	0	0	0	0
4'		3	14546286	392195	2680678	15033438	0	0	0	0
4		3	14551083	392195	2681195	15038264	0	0	ő	0
4		3	14555830	392195	2681560	15043028	Ö	Ö	Ö	Ö
5	0 28/05/2005 12.15	3	14560648	392196	2681967	15047865	0	0	0	0
5	1 28/05/2005 12.30	3	14565573	392196	2682662	15052855	0	0	0	0
5.		3	14569713	392196	2683660	15057114	0	0	0	0
5.		3	14573576	392196	2684743	15061129	0	0	0	0
5-		3	14576436	392196	2685523	15064097	0	0	0	0
5: 5:		3	14579362	392196	2686138	15067091	0	0 0	0	0 0
5		3 3	14581896 14584373	392196 392196	2687008 2687805	15069771 15072377	0	0	0	0
5 5		3	14584373	392196	2688545	15072377	0	0	0	0
3	20/03/2003 17.13	9	17000232	332 130	20000-0	10010008	U	U	U	U

Please note that the recorded data are the absolute values of the energy counters at sampling time. With a sampling interval of 15 minutes, the values over one day are 96 + 1 initial value (at 00,00 hours) that is needed for the calculation of the energy over the 1st sampling period.

Time 0.15 0.30 0.45 1.00 1.15 1.30 1.45 2.00 2.15 2.30 2.45 3.00 3.15 3.30 4.45 5.00 5.15 5.30 6.15 6.30 6.45 7.00 7.45 8.00	P imp kW 0,9428 1,0668 0,7984 0,7844 0,7984 0,8324 0,8396 0,7484 0,7572 0,8044 0,672 0,776 0,7464 0,7672 0,8404 0,72 0,6828 0,8212 0,8428 0,7332 0,7568 0,7292 0,714 0,6272 0,5948 0,7436 0,7288 0,6184 0,6724	Q ind imp kvar
8.00	0,6724	(

If the data are used for drawing a load profile of Active Demand in kW it is necessary to:

- determine the energy readings of each period by calculating the difference of one period with respect to earlier period (e.g. value at 00,15 hours minus value at 00.00 hours, and so on.
- transform the value (expressed in 1/10 of kWh) into a kWh value by dividing the above difference by 10000.
- multiply the result by 4 (the value is referred to 15 min but it needs to be referred to 1 hour)


The formula to apply to the 1st cell is therefore: =(D19-D18)/10000*4 By *copying* the 1st cell and *pasting* it into the following cells the formula is extended to the entire column.

The same operation is applied to the import Reactive Energy, for determining the Reactive Demand in kvar, by copying and pasting the formulas in the side columns.

The left column was formatted to show time only by selecting the HOUR format for cell/column (in order to hide the date indication).

N.B. due to limited space, the example above shows only a portion of readings out of one day.

Upon graphing the data obtained, the resulting graph will show as below indicated.

11.10 Application examples

11.10.1 Changing the readings stored by Service (1) Load Profiles.

The instrument is supplied with a default configuration file designed for application with the Energy Brain software. The default configuration foresees the storage of all the 8 energy counters values of the 4 quadrants. The energy counters used for this service in combination with the Energy Brain software are at 64 bit (4 registers) in order to allow an accurate energy count from 1/10 of Wh up to 99.999.999 kWh. It is essential to maintain these settings should the instrument be used with the Energy Brain software.

In order to change the configuration it is first necessary to download the existing configuration in HEX format by using the following command line.

C:\Programs\X3M\XMBF --read --ser=com1,38400,8,n,2 --addr=27 --fnum=0100 --hex

Edit then the file by means of the Notepad program.

```
| March | March | Missaleza |
```

The request is to store some other additional parameters; the specific case shows the three Voltage THDs an the three Current THDs.

The file was generated in such a way as to always have the maximum size; this prevents the need of cancellation of the old file when a new file is loaded.

For this purpose a number of FF was placed at the end of the data area for reaching the maximum file size that, being made of one record only, it may contain max 238 byte, equal to EEH byte.

```
(0100)LoadProfiles.hex - Blocco note
File Modifica Formato Visualizza ?
         ***** RECORD #0: FILE HEADER ******
                  <RECORDS DEFINITION STRUCTURE>
                                           Header size (Bytes)
Data records size (Bytes)
          EA
00
02
                                   // Reserved
// ID Flags
         ****** RECORD #1: DATA RECORD *****
                                                                                                                                     Reserved

Descriptor List Size (Bytes)
Internal var: Max data-file number = 60
Internal var: Sampling interval = 15 min
Internal var: Sampling interval = 15 min
Internal var: Ax data-file size = 65535 Bytes
Internal var: Timestamp (main clock - WALL TIME) = 1 gennaio 1970 0
Internal var: Slave ID = 0
External var: Slave ID = 0
External multiple var: Timestamp (main clock - WALL TIME)
External multiple var: Ea imp [wh/10]
External multiple var: Er ind imp [varh/10]
External multiple var: Er cap imp [varh/10]
External multiple var: Es imp [VAh/10]
External multiple var: Ea exp [wh/10]
External multiple var: Er ind exp [varh/10]
External multiple var: Er cap exp [varh/10]
External multiple var: Er cap exp [varh/10]
External multiple var: Es exp [varh/10]
            // <VARIABLES DEFINITION STRUCTURE>
          44
06
         FF
FF
FF
FF
FF
FF
                                                                                                             FF FF FF FF FF FF FF FF
```

The modification is achieved by overwriting the first part of FF with the string identifying the readings that need to be added.

The example string shows the settings for the recording of external variables to be taken from the MODBS registers starting with C8H, corresponding to the 200 register, for a length of 0CH registers, corresponding to 12 ones.

They correspond to the first 12 Input Registers where the parameters required by the user are located The "data records size" is unchanged whilst the "descriptor list size", having added 6 significant bytes, changes from 3EH to 44H.

Upload the new file by means of the command:

```
C:\Programs\X3M\XMBF --write --ser=com1,38400,8,n,2 --addr=27
--fname=(0100)LoadProfiles.hex
```

Upon re-reading the file, after its up-date, and by opening the file with the Notepad program, the following window is obtained:

```
| Modification | Modi
```

11.10.2 Changing the thresholds of Service (4) Events.

The thresholds for the Events Service are given in real value, same as displayed by the instrument, and they already take into account the CTs and VTs multiplying factors.

It is therefore essential to set the proper thresholds depending upon the type of measurement that is made.

In order to change the configuration it is first necessary to download the existing configuration in HEX format by means of the following command

C:\Programs\X3M\XMBF --read --ser=com1,38400,8,n,2 --addr=27 --fnum=0400 --hex

Open then the file by means of the Notepad program.

The data indicated are those of the default configuration file that is factory loaded.

The request is to configure:

the threshold for detection of Voltage Sags (Dips) or Undervoltages to:

160 Volt triggering threshold

170 Volt restore threshold

the threshold for detection of Overcurrents and Current Peaks to:

100 Amps triggering value

90 Amps restore threshold

the time duration that discriminates a Voltage Swell from an Overvoltage:

1 minute duration for discriminating a Voltage Swell

The decimal numbers should be converted into hexadecimal, by using the Windows calculator, and they are then replaced into the applicable fields.

The example show how to change the current threshold value. The new value has to be 100A.

Into the file the current has to be specified in 1/100 of A so we have to write 10.000 decimal that correspond to 2710H.

Upload the new file by means of the following command line:

```
C:\Programs\X3M\XMBF --write --ser=com1,38400,8,n,2 --addr=27
--fname=(0400)Events.hex
```

By re-reading the file after its up-date and by opening it file with the Notepad program, the following window is obtained:

```
| Comparison | Com
```

11.10.3 Changing the parameters stored by Service (5) Peaks

Read the configuration file of this service in Hex format by means of the following command:

```
C:\Programs\X3M\XMBF --read --ser=com1,38400,8,n,2 --addr=27 --fnum=0500 --hex
```

A file is downloaded and saved, named (0500)Peaks.hex, that is opened by means of the Notepad program.

The following picture shows the default configuration file of Service 5 Peaks.

The picture shows the 21 parameters that are currently set where the recording of the Voltage THDs and Current THDs needs to be removed.

By means of the Notepad program, cancel the 6 lines identifying the parameters that need to be removed then modify the two data that establish the "Data records size" and the "Descriptor list size" by removing the 60 (3CH) bytes, that were eliminated, from E4.

The new value is A8H.

Save the file just edited.

The command line:

C:\Programs\X3M\XMBF --del --ser=com1,38400,8,n,2 --addr=27 --fnum=0500 erases the old file in the instrument because the new file is slightly different in size.

```
Upload the new file by means of the following command line:
C:\Programs\X3M\XMBF --write --ser=com1,38400,8,n,2 --addr=27
--fname=(0500)Peaks.hex --create
```

By re-reading the file, after its up-date, and by opening it with the Notepad program, the following window is obtained:

```
| Comparison | Com
```

From now on, the Service will operate on the base of the new settings.

In order to have the data file updated, it is necessary to remove the existing one.

12 Technical Characteristics

Measurement sections:

Voltmetric Inputs:

500 Vrms phase-phase (crest factor max 1.7);

impedence 2,4Mohm

Amperometric Inputs:

5 Arms (crest factor max 1.7);

burden 0,5VA

Frequency: 45 ÷ 65 Hz

Precision: Class 1 on active energy, compliant with CEI EN 61036;

Alternate Accuracy	Voltage S	ensitivity,	Range	and
Nominal Range	Sensitivity ¹	Range	Accura	ıcy ²
500 V	400 mV	500 V	0.06 Rar 0.35 Rea	nge ±

Nota 1: Minimal Reading 20 VNota 2: Guaranteed up to 50 V

Alternate Accuracy	Current S	ensitivity,	Range	and
Nominal Range	Sensitivity ¹	Range	Accura	cy ²
5 A	5 mA	6 A	0.06 Range : 0.35 Reading	
1 A	0.5 mA	1 A	0.06 Ran 0.35 Rea	

- Note 1: Minimal reading 10 mA

- Note 2: Accuracy guaranteed up to 100 mA

Overload:

Voltmetric Inputs: max 900 Vrms peak value for 1 second **Amperometric Inputs:** max 100 Arms peak value for 1 s.

Maximum voltage to ground: for both voltage and current conductors the maximum voltage to ground is 350 Vrms.

Power Supply: separated power supply 85-265Vac/100-374Vdc or 24Vac/18-60Vdc depending on types. Maximum voltage to ground 265 Vrms

Power Consumption: 5 VA **Cabling:** use category II cables.

Operating Temperature: from -20 to +60 °C

Relative Humidity (R.H.): max 95% without condensation

Applicable Regulations: Safety CEI EN 61010 class 2, category II, pollution class II. To be

positioned in a protective electrical enclosure making the cabling not accessible.

Electromagnetic Compatibility: CEI EN 61326-1 A

Display: Backlit 256 LCD with white LED lamp.

Automatic range adjustment: 2 current ranges Offset: automatic amplifier offset adjustment

Counters: energy counters with 0.1 kWh resolution and maximum value 99,999,999.9 kWh

(serial input).

Mount: DIN 96 x 96 mm.

Weight: 360 g (460 g with packaging). **Protection:** IP40 on front, IP20 elsewhere.

Size: 105 x 90 x 60 mm

Outputs: 2 digital outputs for pulses or alerts (Din 43864 27 Vdc 27 mA)

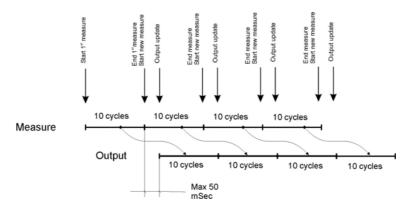
Options

Galvanically Isolated RS485

Output isolation 1000 Vrms

Galvanically Isolated RS232

Output isolation 1000 Vrms


Galvanically Isolated Analog Port 4-20 mA

Output isolation 1000 Vrms

Output: self supplied 0 to 20 mA on 500 Ohm max

Precision: < 0.2% Reading. Stability: 200 ppm/°C Latency: 50 ms maximum

Update frequency: 10 grid cycles frequency

13 Firmware Revisions

v1.11

First release

14 Order codes

Instruments

Designator	Description	Code
X3M -D	Energy Data Manager (Power supply 100/230 V)	PFE 840-00
X3M -D 24	Energy Data Manager (Power supply 24 V)	PFE 840-04

Options

Designator	Description	Code
RS485 Interface (Din)	Interface with optoinsulated RS485 port.	PFE 830-00
RS232 Interface (Din)	Interface with optoinsulated RS232 port.	PFE 825-00
OUTPUT 2x4-20 mA (Din)	Double analogue output 4-20 or 0-20 mA programmable on any unit.	PFE 835-00

15 DECLARATION OF CONFORMITY

Akse hereby declares that its range of products complies with the following directives

EMC 89/336/EEC 73/23CE 93/68 CE

and complies with the following product's standard

CEI EN 61326 - IEC 61326 CEI EN 61010 - IEC 1010

The product has been tested in the typical wiring configuration and with peripherals conforming to the EMC directive and the LV directive.

November 2005
Erminio Mazzoni
Technical Director

Edition 8 November 2005 The document is subject to modification without prior notice. This document belongs to AKSE; all rights are reserved.

AKSE SRL Via Aldo Moro, 39 42100 Reggio Emilia (RE) - ITALY Telephone: +39 0522 924244

Fax: +39 0522 924245 E-mail: info@akse.it Internet: www.akse.it

