

PICO PRO D4 R5485

PICO PRO D4 R5485

ISTRUZIONI INSTALLAZIONE

COPYRIGHT

Electrex è un marchio di Akse S.r.l. Tutti i diritti riservati. La riproduzione, l'adattamento o la trascrizione di questo documento con qualsiasi mezzo senza preventiva autorizzazione scritta di Akse sono proibiti, tranne nei casi previsti dalle leggi relative al copyright.

GARAN7IA

Questo prodotto è garantito contro eventuali difetti dei materiali e della lavorazione per un periodo di 24 mesi dalla data di produzione. La garanzia non copre difetti dovuti a: uso improprio ed incuria; danni provocati da agenti atmosferici; atti vandalici; materiale soggetto ad usura o aggiornamenti firmware.

Akse si riserva, a sua esclusiva discrezione, il diritto di riparare o sostituire i prodotti ritenuti difettosi. La garanzia si considera decaduta quando il guasto è indotto da un uso improprio o da una procedura operativa non contemplata in questo manuale.

PROCEDURA DI SPEDIZIONE PER VERIFICA O RIPARAZIONE

Considerata la tipologia di prodotto, le verifiche o le riparazioni possono essere effettuate solo presso i laboratori Akse.

Akse accetta spedizioni, per verifica o riparazione, solo se preventivamente autorizzate. La spedizione verso Akse è in porto franco (a carico del cliente) e dovrà essere accompagnata dal numero di reso (RMA).

SPEDIZIONE DEI PRODOTTI RESI AL CLIENTE

La spedizione verso verso il cliente è in porto assegnato (a carico del cliente). Qualora un prodotto, in garanzia o non in garanzia, risultasse correttamente funzionante. verrà addebitato al cliente un importo a forfait per controllo, ricollaudo e ricalibrazione.

SICURF77A

Questo strumento è stato costruito e collaudato in conformità alle norme CEI EN 61010-1 CAT III-300V, classe 2, per tensioni di esercizio inferiori o uguali a 300 Vac rms fase neutro. Al fine di mantenere queste condizioni e garantirne un utilizzo sicuro, l'utilizzatore deve attenersi alle indicazioni ed ai contrassegni contenuti nelle istruzioni seguenti.

- · Al ricevimento dello strumento, prima di procedere all'installazione, controllare che questo sia integro e che non abbia subito danni durante il trasporto.
- · Verificare che tensione di esercizio e la tensione di rete coincidano e successivamente procedere all'installazione.
- · L'alimentazione dello strumento non deve essere collegata a terra.
- · Lo strumento non è provvisto di fusibile di protezione sull'alimentazione, deve essere quindi protetto a cura dell'installatore.
- Le operazioni di manutenzione e/o riparazione devono essere effettuate solamente da personale qualificato e autorizzato. Qualora si abbia il sospetto che lo strumento non sia più sicuro, metterlo fuori

servizio ed assicurarsi che non venga utilizzato inavvertitamente. Un esercizio non è più sicuro quando: lo strumento presenta danni chiaramente visibili; quando lo strumento non funziona più; dopo un prolungato stoccaggio in condizioni sfavorevoli; dopo gravi danni subiti durante il trasporto.

Lo strumento deve essere installato seguendo tutte le normative locali.

SICUREZZA DEGLI OPERATORI

Attenzione: il non rispetto delle seguenti istruzioni può causare pericolo di morte.

- Durante le normali operazioni, tensioni pericolose possono essere presenti sui morsetti dello strumento e attraverso i trasformatori di tensione e di corrente. I trasformatori di corrente e di tensione con il primario energizzato possono generare tensioni letali. Seguire le precauzioni di sicurezza standard eseguendo qualunque attività di installazione o servizio.
- I morsetti sul retro dello strumento non devono essere raggiungibili dall'operatore dopo l'installazione. All'operatore deve essere accessibile solo la parte frontale.
- Non usare le uscite digitali per funzioni di protezione. Questo include applicazioni per limitare la potenza. Lo strumento può essere usato per funzioni di protezione secondaria.
- Lo strumento deve essere protetto da un dispositivo di sezionamento in grado di sezionare l'alimentazione, che sia facilmente raggiungibile da parte dell'operatore e ben identificato come sezionatore dell'apparecchio.
- Lo strumento e i suoi collegamenti devono essere opportunamente protetti per il cortocircuito.

Precauzione: il non rispetto delle istruzioni può causare danni persistenti allo strumento.

- Le uscite e le opzioni sono a bassa tensione e non possono essere alimentate da alcuna tensione esterna non specificata.
- L'applicazione sugli ingressi di corrente, di livelli non compatibili, può danneggiare lo strumento.

INFORMATIVA RIFIUTI DA APPARECCHIATURE ELETTRICHE **ED ELETTRONICHE (RAEE)**

DICHIARAZIONE DI CONFORMITÀ

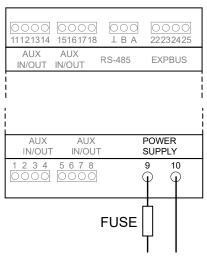
La società AKSE dichiara che questa famiglia di strumenti soddisfa i requisiti delle direttive 2014/30/UE, 2014/35/UE e risponde ai requisiti delle norme EN 61010-1, EN 61010-2-030, EN 61326-1, EN 62053-22, EN 50470-1, EN 50470-3. L'apparato è stato provato nella configurazione tipica di installazione e con periferiche conformi alla direttiva EMC e alla direttiva di bassa tensione.

Ulteriore documentazione può essere scaricata dal nostro sito www.electrex.it. Questo documento è di proprietà della società AKSE che se ne riserva tutti i diritti

RII		1	2	3	4	5	6	7	8	9	10	11	12
ES	. CODICE	Р	F	Α	P	4	0	1	-	Х	X	Х	С
1	PRODOTTO									Т			
2	LAVORAZIONE												
3	PROVENIENZA												
4	MODELLO												
5	CONTENITORE	1											
6	MISURE	◀											
7	COMUNICAZIONE												
8	-												
9	SCHEDA INTERNA SLOT 1	<											
10	SCHEDA INTERNA SLOT 2	←											
11	ALIMENTAZIONE	-											
12	COLORE												
12	COLORE												_

CODICE PRODOTTO PICO

Il codice prodotto e il numero di serie sono recuperabili dall'etichetta posta sul lato dello strumento



INDICE					
SEZIONE	COD.	RIF	VARIANTE	Pag.	
ALIMENTAZIONE				4	
LED				4	
SERIALE 485				4	
COMPARATORI E LOGICHE				5	
COLLEGAMENTO IN/OUT				11	

CARATTERISTICHE MECCANICHE						
Custodia	Plastica autoestinguente classe V0					
Grado di protezione:	IP40 sul pannello frontale, IP20 lato morsetti					
Dimensioni:	70 x 90 x 58 mm (4 moduli DIN)					

ALIMENTAZIONE

Lo strumento è dotato di alimentazione separata. I morsetti per l'alimentazione sono numerati (9 e 10). La sezione massima dei cavi da utilizzare è 2,5 mm² se flessibili, 4 mm²

IDENTIFICAZIONE ALIMENTAZIONE												
RIF.	1	2	3	4	5	6	7	8	9	10	11	12
ES. CODICE	Р	F	Α	Р	4	0	1	-	X	X	Х	С

RIF.	ALIMENTAZIONE	FUSIBILE	NOTE
1	110/120 Vac	F: 500 mA T	
2	230/240 Vac	F: 500 mA T	
7	9÷24xVac 9/36 Vdc	F: 500 mA T	L'alimentazione in continua non ha
8	15÷36Vac 18/60 Vdc	F: 500 mA T	polarità.

SERIALE RS485

Permette di collegare almeno 128 dispositivi su una linea di trasmissione lunga fino a

Non è possibile utilizzare dispositivi con diverso protocollo di comunicazione sullo stesso bus RS-485.

CAVO

Prevede come linea di trasmissione una coppia di conduttori intrecciati (twisted pair), genericamente indicati come A e B.

Cavi dotati di schermatura rendono maggiormente immune il bus alle interferenze elettromagnetiche esterne e riducono le interferenze elettromagnetiche generate. Diverse aziende producono cavi specificatamente sviluppati per lo standard RS-485. (in genere sezione 22-24 AWG ed impedenza caratteristica 120Ω).

E' possibile utilizzare cavo CAT.5 UTP, tuttavia le peggiori caratteristiche del cavo limitano la lunghezza massima del bus a circa 600 metri.

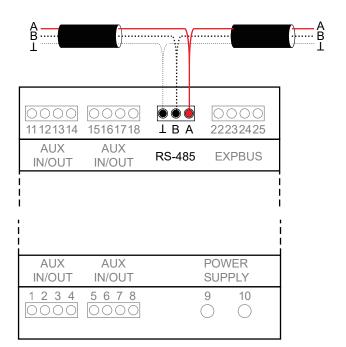
CABLAGGIO

La tipologia di cablaggio è quella "entra-esci" (daisy chain). Se il cavo utilizzato è dotato di schermatura, occorre mettere a massa (PE Protective Earth) il conduttore dedicato alla

VELOCITÀ CORRETTA

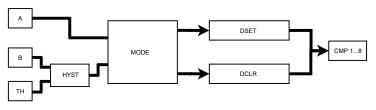
La capacità parassita della linea di trasmissione aumenta all'aumentare della lunghezza della linea, limitando la massima velocità utilizzabile. Una legge empirica fornisce i

Baud (bps)	Lunghezza bus (m)
115200	85
57600	170
38400	250
19200	500
9600	1000

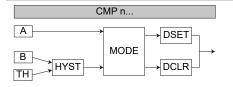

Questi valori sono conservativi: su linee correttamente cablate, in presenza di un numero ridotto di dispositivi, è possibile utilizzare velocità più elevate di quelle indicate.

TERMINAZIONE DEL BUS

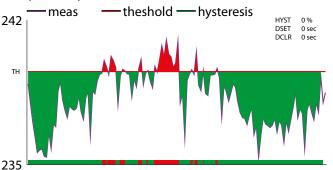
I cavi sviluppati per RS-485 hanno impedenza tipica di 120Ω ; per limitare la riflessione del segnale è opportuno inserire alla fine del bus una resistenza di terminazione dello stesso valore. Su bus RS-485 di lunghezza ridotta, configurati con basse velocità di comunicazione, è possibile non inserire le resistenze di terminazione.



LED	Descrizione
STATUS	Led giallo: pulsa in modo costante indicando il corretto funzionamento
ACTIVITY	Led verde: pulsa indicando la comunicazione della porta RS485.
POWER	Led verde: indica lo stato di accensione dello strumento.



COMPARATORI


CMP.18	VOCE VISUALIZZATA	PARAMETRI DISPONIBILI	DEFAULT	
		A < TH		L'uscita si attiva quando il segnale A è inferiore alla soglia preimpostata TH
		A > TH		L'uscita si attiva quando A supera TH
		A < B		attivazione se A è minore di B
	MODE	A > B	OFF	attivazione se A è maggiore di B
	WODE	VAR < TH	OFF	(A-B)/B * 100 < TH variazione percentuale
		VAR > TH		(A-B)/B * 100 > TH variazione percentuale
		ABVAR < TH		abs(A-B)/B * 100 < TH variazione percentuale assoluta
		ABVAR > TH		abs(A-B)/B * 100 > TH variazione percentuale assoluta
	Α	0 508	000	Variabile A da controllare (Vedi tabella indice variabili)
	В	0 508	000	Variabile B da controllare (Vedi tabella indice variabili)
	TH		+0.000	Valore numerico soglia di allarme
	HYST	0 99 %	02	Isteresi (valore percentuale, riferito alla soglia o alla variabile B, per la disattivazione).
		0 99 %	02	Un'isteresi elevata aumenta la stabilità ma riduce la sensibilità del comparatore.
	DSET	0 6000 sec	0.000	Tempo di ritardo su attivazione Parametri come DSET e DCLR devono essere coordinati con l'isteresi
	DCLR	0 6000 sec	0.000	Tempo di ritardo su disattivazione per evitare comportamenti imprevisti

COMPARATORE senza isteresi e ritardi

MODE	A > TH
Α	038
В	000
TH	+240
HYST	00
DSET	0.0000
DCLR	0.000

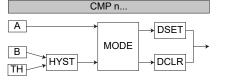
Il grafico rappresenta il comportamento di un comparatore senza isteresi, soglia (threshold) e senza tempi di ritardo per l'attivazione e la disattivazione.

LEGENDA CURVE E L	INEE							
meas (viola):	Èil va	È il valore misurato dal sistema (ad esempio una tensione,						
	una te	una temperatura, ecc.), che oscilla nel tempo.						
threshold (rosso):	Soglia	Soglia di attivazione/disattivazione (unica, senza isteresi).						
hysteresis (verde):	Coinc	side con la soglia, poiché l'isteresi è 0%.						
Barra in basso:	Stato	Stato dell'uscita (verde = OFF, rosso = ON).						
Parametri								
HYST (isteresi):	0 %	La soglia di disattivazione è posta al 0% sotto la						
		soglia di attivazione						

HYST (isteresi):	0 %	La soglia di disattivazione è posta al 0% sotto la
		soglia di attivazione
DSET (Ritardo attivazione)	0 sec.	nessun ritardo presente
DCLR (Ritardo disattivazione)	0 sec.	nessun ritardo presente

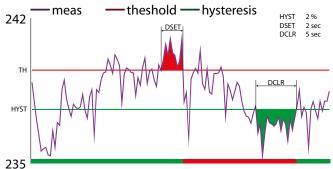
COMPORTAMENTO:

Il comparatore commuta immediatamente ogni volta che il valore misurato attraversa la soglia TH, sia in salita che in discesa.


La barra in basso mostra molte commutazioni rapide (chattering), causate dal rumore o dalle piccole oscillazioni del segnale attorno alla soglia.

Non essendoci né isteresi né ritardi, il sistema è molto sensibile e instabile.

SVANTAGGI


Il sistema è molto sensibile, commuta continuamente al minimo disturbo vicino alla soglia. Presenta instabilità, rischio di usura dei componenti, false attivazioni/disattivazioni.

COMPARATORE con isteresi e ritardi

MODE	A > TH
Α	038
В	000
TH	+240
HYST	02
DSET	0002.0
DCLR	0005.0

Il grafico rappresenta il comportamento di un comparatore con isteresi, soglia (threshold) e tempi di ritardo per l'attivazione e la disattivazione.

LEGENDA CURVE E LINEE

È il valore misurato dal sistema (ad esempio una tensione,
una temperatura, ecc.), che oscilla nel tempo.
È la soglia di attivazione (TH). Quando il valore misurato
supera questa soglia, il sistema può attivarsi.
È la soglia di disattivazione (HYST), più bassa rispetto
alla soglia di attivazione. Serve per evitare commutazioni
rapide e instabili.
Stato dell'uscita (verde = OFF, rosso = ON).

Parametri

i urumetii		
HYST (isteresi):	2 %	La soglia di disattivazione è posta al 2% sotto la
		soglia di attivazione
DSET (Ritardo attivazione)	2 sec.	il valore misurato deve restare sopra la soglia per
		almeno 2 secondi prima che il sistema si attivi
DCLR (Ritardo disattivazione)	5 sec.	il valore misurato deve restare sotto la soglia di
		isteresi per almeno 5 secondi prima che il sistema
		si disattivi

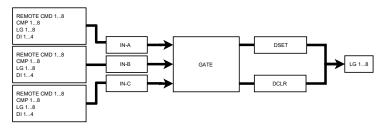
COMPORTAMENTO:

- 1) Il valore misurato oscilla sotto la soglia di attivazione (TH), quindi il sistema resta disattivato (barra verde in basso).
- 2) Superamento della soglia (TH): Quando la curva viola supera la soglia rossa (TH), parte il timer di attivazione (DSET).
 - Se il valore resta sopra la soglia per almeno 2 secondi (area rossa), il sistema si attiva (barra rossa in basso).
 - Se il valore scende sotto la soglia prima dei 2 secondi, il timer si azzera e il sistema resta disattivato.
- 3) Attivazione: Dopo il superamento della soglia per il tempo richiesto, il sistema si attiva (barra rossa in basso).
- 4) Disattivazione con isteresi: Quando il valore misurato scende sotto la soglia di isteresi (HYST, linea verde), parte il timer di disattivazione (DCLR).
 - Se il valore resta sotto questa soglia per almeno 5 secondi (area verde), il sistema si disattiva (barra verde in basso).

Se il valore risale sopra la soglia di isteresi prima dei 5 secondi, il timer si azzera e il sistema resta attivo.

VANTAGGI

Stabilità: L'isteresi impedisce che piccoli disturbi o rumore vicino alla soglia causino continue attivazioni/disattivazioni (chattering). Affidabilità: I ritardi DSET e DCLR assicurano che solo superamenti prolungati delle soglie


attivino o disattivino il sistema, filtrando i picchi brevi.

INDICE VARIABILI MEAS A e B

			IGITA	LINP	JT CO	UNTERS	COUNTERS WITH WEIGHT				
SLOT	MEAS	T1	T2	Т3	T4	DERIVATIVE	T1	T2	T3	T4	
Α	DI1	128	132	136	140	256	0	4	8	12	
Α	DI2	129	133	137	141	257	1	5	9	13	
Α	DI3	130	134	138	142	258	2	6	10	14	
Α	DI4	131	135	139	143	259	3	7	11	15	
В	DI1	144	148	152	156	260	16	20	24	28	
В	DI2	145	149	153	157	261	17	21	25	29	
В	DI3	146	150	154	158	262	18	22	26	30	
В	DI4	147	151	155	159	263	19	23	27	31	
С	DI1	160	164	168	172	264	32	36	40	44	
С	DI2	161	165	169	173	265	33	37	41	45	
С	DI3	162	166	170	174	266	34	38	42	46	
С	DI4	163	167	171	175	267	35	39	43	47	
D	DI1	176	180	184	188	268	48	52	56	60	
D	DI2	177	181	185	189	269	49	53	57	61	
D	DI3	178	182	186	190	270	50	54	58	62	
D	DI4	179	183	187	191	271	51	55	59	63	
E	DI1	192	196	200	204	272	64	68	72	76	
E	DI2	193	197	201	205	273	65	69	73	77	
E	DI3	194	198	202	206	274	66	70	74	78	
E	DI4	195	199	203	207	275	67	71	75	79	
F	DI1	208	212	216	220	276	80	84	88	92	
F	DI2	209	213	217	221	277	81	85	89	93	
F	DI3	210	214	218	222	278	82	86	90	94	
F	DI4	211	215	219	223	279	83	87	91	95	
G	DI1	224	228	232	236	280	96	100	104	108	
G	DI2	225	229	233	237	281	97	101	105	109	
G	DI3	226	230	234	238	282	98	102	106	110	
G	DI4	227	231	235	239	283	99	103	107	111	
Н	DI1	240	244	248	252	284	112	116	120	124	
Н	DI2	241	245	249	253	285	113	117	121	125	
Н	DI3	242	246	250	254	286	114	118	122	126	
Н	DI4	243	247	251	255	287	115	119	123	127	

ANALOG INPUT										
SLOT	MEAS	INST	AVG	MIN	MAX	INTEGRATED				
Α	AI1	288	320	352	384	416				
Α	Al2	289	321	353	385	417				
Α	AI3	290	322	354	386	418				
Α	AI4	291	323	355	387	419				
В	AI1	292	324	356	388	420				
В	Al2	293	325	357	389	421				
В	AI3	294	326	358	390	422				
В	Al4	295	327	359	391	423				
С	AI1	296	328	360	392	424				
С	Al2	297	329	361	393	425				
С	AI3	298	330	362	394	426				
С	AI4	299	331	363	395	427				
D	AI1	300	332	364	396	428				
D	Al2	301	333	365	397	429				
D	AI3	302	334	366	398	430				
D	AI4	303	335	367	399	431				
E	AI1	304	336	368	400	432				
E	Al2	305	337	369	401	433				
E	AI3	306	338	370	402	434				
E	Al4	307	339	371	403	435				
F	AI1	308	340	372	404	436				
F	AI2	309	341	373	405	437				
F	AI3	310	342	374	406	438				
F	AI4	311	343	375	407	439				
G	AI1	312	344	376	408	440				
G	Al2	313	345	377	409	441				
G	AI3	314	346	378	410	442				
G	Al4	315	347	379	411	443				
Н	AI1	316	348	380	412	444				
Н	Al2	317	349	381	413	445				
Н	AI3	318	350	382	414	446				
Н	AI4	319	351	383	415	447				

LOGICHE

LOGIC-GATE 18	VOCE VISUALIZZATA	PARAMETRI DISPONIBILI	DEFAULT	
	GATE	OR, NOR, AND, NAND, XOR, XNOR	OR	Selezione operatore logico (vedi tabella seguente)
	IN-A	NONE, CMD18, CMP18, LG18,	NONE	
		DI.A14. DI.B14. S0.16	NONE	Selezione tipo di input
	IN-C	DI.A14, DI.B14, SU.16	NONE	
	DSET	0 6000 sec	0.000.0	Tempo di ritardo su attivazione
	DCLR	0 6000 sec	0.000.0	Tempo di ritardo su disattivazione

L'immagine rappresenta un sistema digitale dove più segnali provenienti da comparatori , logiche, ingressi digitali o comandi remoti vengono combinati tramite una logica selezionabile (GATE), con la possibilità di introdurre ritardi temporali sia per l'attivazione che per la disattivazione dell'uscita.

Le porte logiche possono essere collegate in cascata.

1. INGRESSI

IN-A, IN-B, IN-C

Questi sono ingressi digitali che provengono da comparatori (CMP 1...8), da altre logiche (LG 1...8), da ingressi digitali (DI 1...4) o da comandi remoti (CMD 1...8) come indicato nei blocchi a sinistra.

Ogni ingresso può essere il risultato di una comparazione (ad esempio, una soglia superata) o di una logica precedente.

2. GATE (porta logica selezionabile)

Questo blocco consente di scegliere il tipo di operazione logica da applicare agli ingressi (ad esempio AND, OR, XOR, ecc.).

La scelta della porta logica determina come vengono combinati i segnali in ingresso per generare l'uscita.

In pratica, puoi decidere se l'uscita si attiva solo quando tutti gli ingressi sono attivi (AND), almeno uno è attivo (OR), ecc.

3. DSET (Delay Set)

Questo blocco introduce un ritardo temporale per l'attivazione dell'uscita.

Significa che, anche se la condizione logica è soddisfatta, l'uscita verrà attivata solo se la condizione rimane vera per tutto il tempo impostato su DSET.

4. DCLR (Delay Clear)

Questo blocco introduce un ritardo temporale per la disattivazione dell'uscita.

L'uscita verrà disattivata solo se la condizione logica rimane falsa per tutto il tempo impostato su DCLR.

5. Uscita (LG 1...8)

L'uscita è il risultato della combinazione logica e dei ritardi temporali applicati.

Può essere utilizzata per comandare altri dispositivi, attivare allarmi, inviare segnali di controllo, ecc

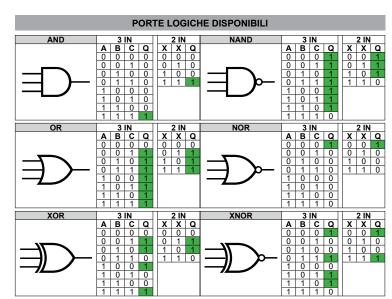
FUNZIONAMENTO COMPLESSIVO

I comparatori generano segnali digitali in base alle condizioni impostate (ad esempio, superamento di soglia).

Questi segnali vengono inviati agli ingressi IN-A, IN-B, IN-C.

Il blocco GATE applica la logica selezionata per decidere se l'uscita deve essere attiva o meno.

DSET e DCLR aggiungono ritardi per evitare commutazioni rapide o instabili, aumentando la robustezza del sistema.


L'uscita LG 1...8 riflette lo stato finale, pronto per essere utilizzato da altri sistemi o dispositivi.

VANTAGGI

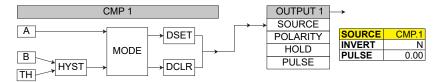
Flessibilità: Puoi scegliere la logica più adatta alle tue esigenze.

Robustezza: I ritardi temporali evitano commutazioni indesiderate dovute a disturbi o fluttuazioni brevi.

Modularità: Puoi combinare più comparatori e logiche per realizzare funzioni di controllo complesse.

ESEMPI CONFIGURAZIONE COMPARATORI E LOGICHE

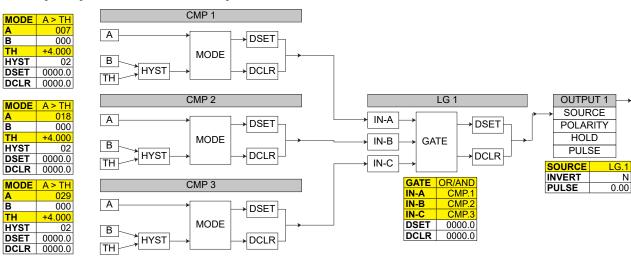
ATTIVAZIONE USCITA DIGITALE, SE LA CORRENTE TRIFASE SUPERA LA SOGLIA


Il comparatore diventa ATTIVO quando la variabile A, (Corrnete trifase), supera il valore di soglia TH (5A).

Il comparatore diventa DISATTIVO quando la variabile A, (Corrnete trifase), scende sotto il valore di soglia TH ed il relativo valore di isteresi (5A-2% = 4,9A).

Non sono presenti tempi di attivazione o disattivazione.

L'uscita digitale segue l'andamento dello stato del comparatore.


ATTIVAZIONE USCITA DIGITALE, SE UNA O TUTTE LE CORRENTI DI FASE SUPERANO IL VALORE DI SOGLIA

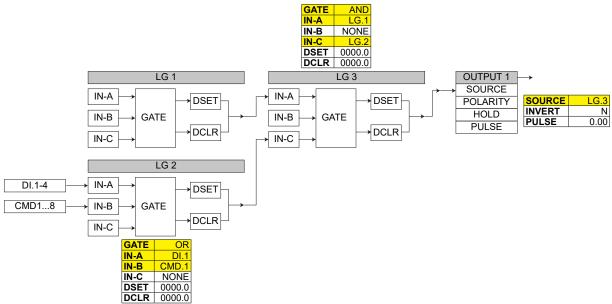
Sono presenti tre comparatori, uno per ogni fase di corrente, che diventano ATTIVI quando la variabile A, (Corrnete di fase), supera il valore di soglia TH (4A). I comparatori diventano DISATTIVI quando la variabile A, (Corrnete di fase), scende sotto il valore di soglia TH ed il relativo valore di isteresi (4A-2% = 3,92A).

I comparatori diventano DISATTIVI quando la variabile A, (Corrnete di fase), scende sotto il valore di soglia TH ed il relativo valore di isteresi (4A-2% = 3,92A Non sono presenti tempi di attivazione o disattivazione.

La logica LG1 diventa attiva in base alla mdalità del GATE selezionata. Nella modalità OR è sufficiente un qualsiasi comparatore attivo, mentre nella modalità AND, è necessario che tutti i comparatori siano attivi.

L'uscita digitale segue l'andamento dello stato della logica LG 1

L'USCITA VIENE ABILITATA SOLO CON INGRESSO DIGITALE O REMOTE COMMAND ATTIVI


FUNZIONAMENTO LOGICO

LG 2 valuta la logica OR tra Dl.1 (un ingresso digitale) e CMD.1 (un comando). Se almeno uno dei due è attivo, l'uscita di LG 2 è attiva.

LG 1 valuta una logica (non specificata) tra i suoi tre ingressi, e la sua uscita va a LG 3.

LG 3 riceve come ingressi l'uscita di LG 1 (IN-A) e l'uscita di LG 2 (IN-C), e applica una logica AND:

L'uscita di LG 3 sarà attiva solo se entrambe le condizioni (LG 1 e LG 2) sono vere contemporaneamente. **OUTPUT 1** si attiva solo se la condizione di LG 3 è vera, senza inversioni né impulsi temporizzati.

ATTIVAZIONE USCITA 1 PER VARIAZIONE TENSIONE E USCITA 2 PER VARIAZIONE FREQUENZA

L'immagine mostra uno schema logico di automazione in cui quattro comparatori (CMP 1...4) analizzano segnali analogici e, tramite logiche programmabili, comandano due uscite digitali (OUTPUT 1 e OUTPUT 2).

Le uscite vengono attivate in base a variazioni di tensione e frequenza, come indicato dal titolo.

1. Comparatori (CMP 1 - CMP 4)

Ogni comparatore riceve un segnale d'ingresso (A) e lo confronta con una soglia (TH).

La modalità di confronto può essere A > TH (attiva quando il segnale supera la soglia) oppure A < TH (attiva quando il segnale scende sotto la soglia). HYST introduce isteresi (2%) per evitare commutazioni rapide dovute a piccoli disturbi.

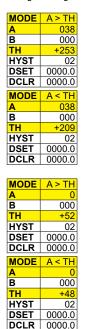
DSET e DCLR (qui impostati a zero) permetterebbero di inserire ritardi in attivazione/disattivazione, ma in questo caso la commutazione è immediata.

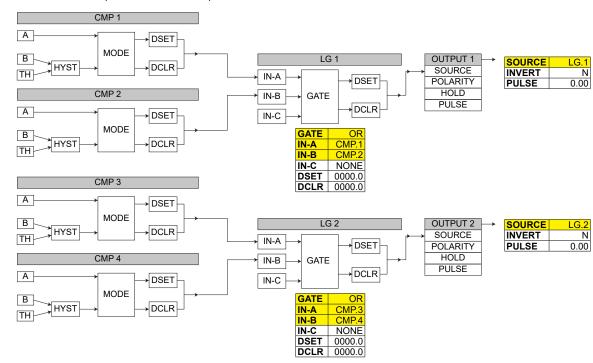
2. Logiche (LG 1 e LG 2)

LG 1 riceve în ingresso le uscite dei comparatori CMP 1 e CMP 2. La logica scelta è OR: l'uscita di LG 1 sarà attiva se almeno uno tra CMP 1 o CMP 2 è attivo. LG 2 riceve in ingresso le uscite dei comparatori CMP 3 e CMP 4. Anche qui la logica è OR: l'uscita di LG 2 sarà attiva se almeno uno tra CMP 3 o CMP 4 è attivo. Anche per questi blocchi, DSET e DCLR sono a zero, quindi non ci sono ritardi.

3. Uscite digitali (OUTPUT 1 e OUTPUT 2)

OUTPUT 1 è comandata da LG 1. Si attiva se almeno uno tra CMP 1 e CMP 2 è attivo (cioè se si verifica una delle condizioni di variazione di tensione impostate). OUTPUT 2 è comandata da LG 2. Si attiva se almeno uno tra CMP 3 e CMP 4 è attivo (cioè se si verifica una delle condizioni di variazione di frequenza impostate). Le opzioni di inversione e impulso sono disattivate (INVERT N, PULSE 0.00).


CINTECI


CMP 1 e CMP 2 monitorano variazioni di tensione: se almeno uno rileva la condizione impostata, si attiva OUTPUT 1.

CMP 3 e CMP 4 monitorano variazioni di frequenza: se almeno uno rileva la condizione impostata, si attiva OUTPUT 2.

L'uso dell'isteresi evita commutazioni rapide indesiderate.

La logica OR garantisce che basta una sola condizione per attivare l'uscita corrispondente.

REPLICARE GLI INGRESSI DIGITALI SULLE USCITE

Configurazione semplice e diretta per replicare gli ingressi digitali sulle uscite digitali corrispondenti.

FUNZIONAMENTO

- 1. Ingressi digitali (Dl.1, Dl.2, Dl.3, Dl.4). Sono segnali digitali in ingresso al sistema, ad esempio provenienti da sensori, interruttori o altri dispositivi digitali.
- Blocchi DIGITAL OUT. Ogni ingresso digitale è collegato a un blocco di uscita digitale (DIGITAL OUT).
 Questi blocchi sono configurati per trasmettere lo stato dell'ingresso direttamente all'uscita corrispondente.

3. Parametri configurati

SOURCE: È impostato sull'ingresso digitale corrispondente (es. per DIGITAL OUT collegato a DI.1, SOURCE = DI.1).

Questo significa che l'uscita digitale riflette esattamente lo stato dell'ingresso DI.1.

INVERT: Impostato su "N" (No), quindi l'uscita non è invertita rispetto all'ingresso.

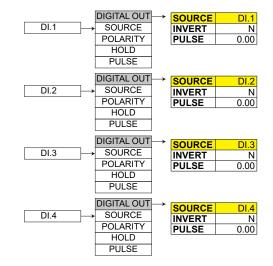
Se l'ingresso è alto (1), l'uscita sarà alta; se l'ingresso è basso (0), l'uscita sarà bassa.

PULSE: Impostato a 0.00, quindi non viene generato alcun impulso temporizzato o segnale a durata limitata.

L'uscita rimane stabile e segue l'ingresso in modo continuo.

4. Altri parametri non utilizzati

POLARITY, HOLD: Non sono configurati o utilizzati in questo schema, quindi non influenzano il comportamento.


IN SINTESI

Questo schema permette di replicare fedelmente lo stato degli ingressi digitali sulle uscite digitali senza modifiche o ritardi. È utile per:

Monitorare direttamente lo stato di sensori o interruttori.

Trasmettere segnali digitali a dispositivi esterni senza elaborazione.

Implementare funzioni di passaggio diretto o "bypass" digitale.

COLLEGAMENTO IN / OUT

Con il codice prodotto e la tabella seguente, è possibile identificare la variante corretta.

RIF.	1	2	3	4	5	6	7	8	9	10	11	12
ES. CODICE	Р	F	Α	P	4	0	1	-	0	0	X	С

RIF.	9	10	
OPZIONE	SLOT 1	SLOT 2	Pagina
NON DISPONIBILE	0	0	
4DI	N	N	12
4DO	С	С	13
2DI 2DO	Q	Q	14
4AI	R	R	15
2AO 4-20 mA	6	6	15
4PT100/1000	U	U	16
SIO	-	Z	17

ESEMPIO	9	10	
MODELLO		SLOT 1	SLOT 2
PFAP401-NC2C	PICO PRO D4 RS485 230-240V 4DI 4DO	4DI	4DO
PFAP401-RN2C	PICO PRO D4 RS485 230-240V 4AI 4DI	4AI	4DI
PFAP401-RQ2C	PICO PRO D4 RS485 230-240V 4AI 2DI 2DO	4AI	2DI 2DO
PFAP401-UQ2C	PICO PRO D4 RS485 230-240V 4PT100 2DI 2DO	4PT100	2DI 2DO

	PINOUT IN/OUT										
		SLC	OT 1		SLOT 2						
	11	12	13	14	15	16	17	18			
4DI	DI4 +	DI4 -	DI3 +	DI3 -	DI4 +	DI4 -	DI3 +	DI3 -			
4DO	DO2 +	DO2 -	DO1 +	DO1 -	DO2 +	DO2 -	DO1 +	DO1 -			
2DI 2DO	DO2 +	DO2 -	DO1 +	DO1 -	DO2 +	DO2 -	DO1 +	DO1 -			
2AO 4-20 mA	AO2	-	AO1	GND	AO2	-	AO1	GND			
4AI	Al4	-	Al3	GND	Al4	-	Al3	GND			
4PT100/1000	PT4	-	PT3	GND	PT4	-	PT3	GND			
4NTC	NTC4	-	NTC3	GND	NTC4	-	NTC3	GND			
SIO	SCL	SDA	GND	VCC	SCL	SDA	GND	VCC			

SLOT 1	SLOT 2	
0000 11121314	0000 15161718	DOD DOD L B A 22232425
AUX IN/OUT	AUX IN/OUT	RS-485 EXPBUS
AUX IN/OUT	AUX IN/OUT	POWER SUPPLY
1234	5 6 7 8	9 10

PINOUT IN/OUT										
		SLC	OT 1		SLOT 2					
	1	2	3	4	5	6	7	8		
4DI	DI1 +	DI1 -	DI2 +	DI2 -	DI1 +	DI1 -	DI2 +	DI2 -		
4DO	DO4 +	DO4 -	DO3 +	DO3 -	DO4 +	DO4 -	DO3 +	DO3 -		
2DI 2DO	DI1 +	DI1 -	DI2 +	DI2 -	DI1 +	DI1 -	DI2 +	DI2 -		
4AI	Al1	-	Al2	GND	Al1	-	Al2	GND		
4PT100/1000	PT1	-	PT2	GND	PT1	-	PT2	GND		
4NTC	NTC1	-	NTC2	GND	NTC1	-	NTC2	GND		
SIO	VCC	GND	SDA	SCL	VCC	GND	SDA	SCL		

Tipologie di schede interne

- 4DI 4COMMON: 4 ingressi digitali con comuni separati
- 4DO 4COMMON: 4 uscite digitali con comuni separati 2DI 2DO 4COMMON: 2 ingressi e 2 uscite digitali con comuni separati
- 4AI: 4 ingressi analogici -10÷10V (compatibile 0÷10V, 0÷5V, -5÷5V, 4÷20mA)
- 2AO 4-20mA: 2 uscite analogiche 4-20mA autoalimentate per un carico fino a 250 ohm e da alimentare per carichi superiori
- 4PT100 o 4PT1000: per rispettivi sensori
- Bus SIO: per il collegamento di Milli Pro I/O e Milli Pro Sensor

Ingressi digitali

Le versioni 2DI o 4DI 4COMMON sono fornite con ingressi digitali optoisolati e completi di filtro antirimbalzo programmabile. Gli ingressi sono normalmente utilizzati per contare impulsi generati esternamente, come ad esempio: contatori gas (occorre un separatore galvanico secondo normativa ATEX), acqua, contapezzi, ecc. Opportunamente programmati possono anche funzionare come indicatori remoti di stato (es. ON/OFF di macchine, interruttori, ecc.). Massima frequenza di campionamento 500Hz (2ms). Richiedono un'alimentazione esterna 10-30Vdc.

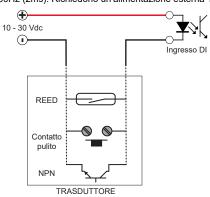
Caratteristiche Ingressi / Uscite (a seconda della versione)						
Ingressi digitali (a comuni separati)	Galvanicamente isolati					
	Funzione programmabile: conteggio impulsi, segnalazione stato, selezione fascia tariffaria					
	Antirimbalzo programmabile es. 10Hz, 100Hz (500Hz per versioni 2DI 2DO e 4DI)					
	Da alimentare esternamente	10-30Vdc				
	Corrente assorbita	2 10mA				

Ingressi Analogici e PT100, PT1000

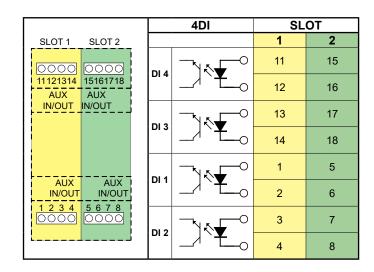
La versione 4AI è dotata di quattro ingressi analogici -10÷10V (compatibile 0÷10V, 0÷5V, -5÷5V, 4÷20mA con resistenza da 200 ohm). Le versioni 4PT100, 4PT1000 hanno 4 ingressi per i rispettivi sensori.

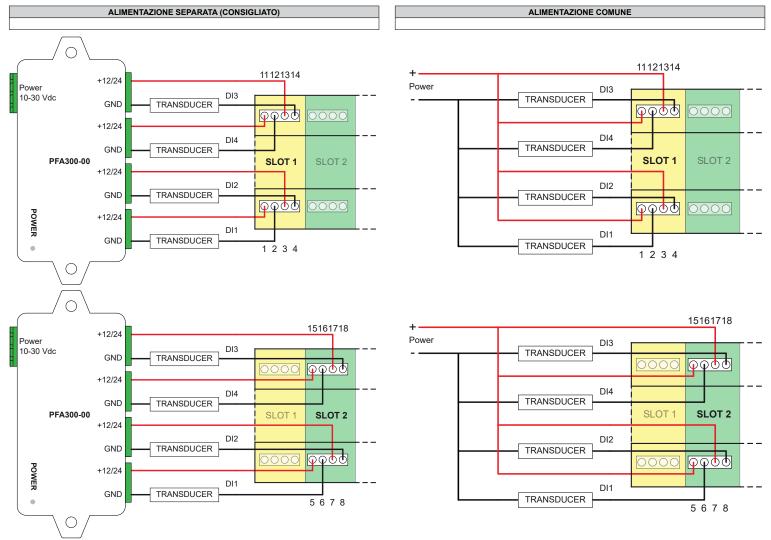
Caratteristiche Ingressi / Uscite (a seconda della versione)					
Ingressi analogici	-10÷10V, 0÷10V, 0÷5V, -5÷5V				
	4÷20mA con resistenza da 200 ohm				

Uscite Digitali


Le versioni 2DO o 4DO 4COMMON sono corredate di uscite optoisolate a transistor con portata 27 Vdc 27 mA secondo DIN 43864. Le uscite sono programmabili come come output degli allarmi interni (vedi Allarmi) o come unità di output controllate da remoto tramite linea seriale e comandi Modbus

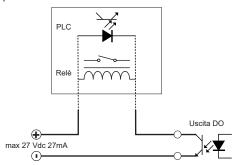
Caratteristiche Ingressi / Uscite (a seconda della versione)				
Uscite digitali (a comuni separati)	Galvanicamente isolati			
	Funzione programmabile: uscite ad impulsi pesati, segnalazione allarmi, uscite di comando			
	NPN conformi DIN 43864 (max 27Vdc, 27mA)			


IN 4DI 4COMMON

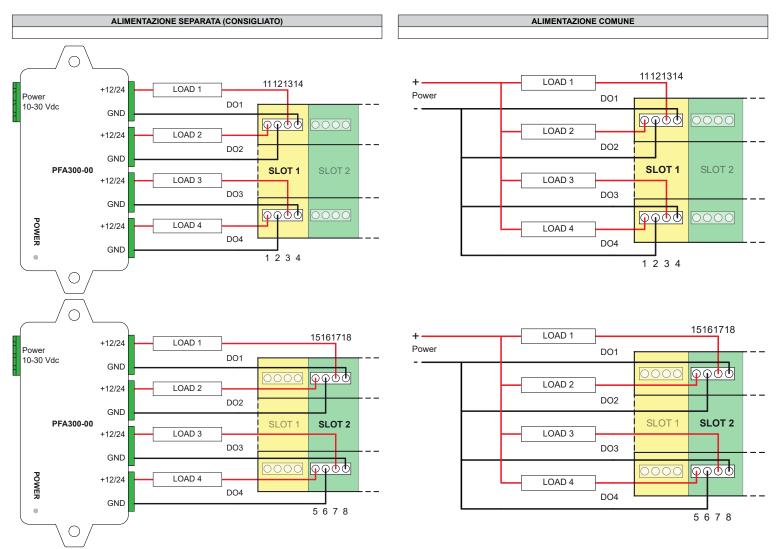

INGRESSI DIGITALI

Gli ingressi digitali sono optoisolati e completi di filtro antirimbalzo programmabile. Sono normalmente utilizzati per contare impulsi generati esternamente, come ad esempio da contatori di gas (occorre un separatore galvanico secondo normativa ATEX), acqua, contapezzi, ecc. Opportunamente programmati possono anche funzionare come indicatori remoti di stato (es. ON/OFF di macchine, interruttori, ecc.). Massima frequenza di campionamento 500Hz (2ms). Richiedono un'alimentazione esterna 10-30Vdc.

Ingressi digitali a comuni separati e galvanicamente isolati				
Tensione di alimentazione (esterna) da 10 a 30 Vdc				
Corrente assorbita da 2 a 10mA				
Massima frequenza di conteggio 500Hz				
N.B. per contatori gas occorre un separatore galvanico secondo normativa ATEX				

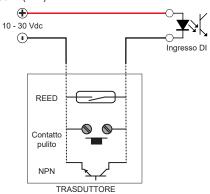


OUT 4DO 4COMMON


USCITE DIGITALI

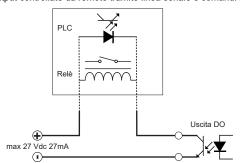
Le uscite digitali sono optoisolate a transistor con portata 27 Vdc 27 mA secondo DIN 43864. Le uscite sono programmabili come output degli allarmi interni (vedi Allarmi) o come unità di output controllate da remoto tramite linea seriale e comandi Modbus.

Uscite digitali a comuni separati e galvanicamente isolate (NPN conformi DIN 43864).				
Massima tensione applicabile 27 Vdc				
Massima corrente commutabile	27mA			


			4DO	SLOT	
SLOT 1	SLOT 2			1	2
0000	0000	DO 2		11	15
11121314 AUX	15161718 AUX	002		12	16
IN/OUT	IN/OUT	DO 1	DO 1	13	17
				14	18
		DO 4	J , /	1	5
IN/OUT		DO 4	*	2	6
1 2 3 4	5 6 7 8	DO 3		3	7
				4	8

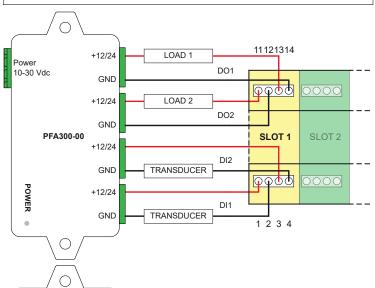
IN/OUT 2DI2DO 4COMMON

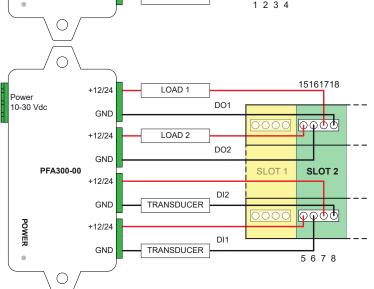
INGRESSI DIGITALI

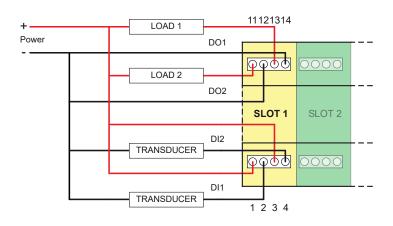

Gli ingressi digitali sono optoisolati e completi di filtro antirimbalzo programmabile. Sono normalmente utilizzati per contare impulsi generati esternamente, come ad esempio da contatori di gas (occorre un separatore galvanico secondo normativa ATEX), acqua, contapezzi, ecc. Opportunamente programmati possono anche funzionare come indicatori remoti di stato (es. ON/OFF di macchine, interruttori, ecc.). Massima frequenza di campionamento 500Hz (2ms). Richiedono un'alimentazione esterna 10-30Vdc.

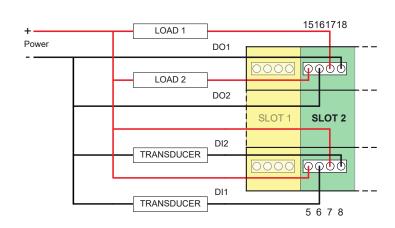
Ingressi digitali a comuni separati e galvanicamente isolati				
Tensione di alimentazione (esterna) da 10 a 30 Vdc				
Corrente assorbita da 2 a 10mA				
Massima frequenza di conteggio 500Hz				
N.B. per contatori das occorre un separatore dalvanico secondo normativa ATEX				

USCITE DIGITALI


Le uscite digitali sono optoisolate a transistor con portata 27 Vdc 27 mA secondo DIN 43864. Le uscite sono programmabili come output degli allarmi interni (vedi Allarmi) o come unità di output controllate da remoto tramite linea seriale e comandi Modbus.


Uscite digitali a comuni separati e galvanicamente isolate (NPN conformi DIN 43864).					
Massima tensione applicabile	27 Vdc				
Massima corrente commutabile	27mA				


			2DI2DO	SLOT	
SLOT 1	SLOT 2			1	2
0000	0000	DO	J. /	11	15
11121314 AUX	15161718 AUX	2		12	16
IN/OUT	IN/OUT	DO	7. /	13	17
		1	W . \ .	14	18
		DI 1	7,5	1	5
IN/OUT	+		_/ ` *	2	6
1 2 3 4	5 6 7 8	DI 2	7,50	3	7
			_/\` \	4	8


ALIMENTAZIONE COMUNE

ALIMENTAZIONE SEPARATA (CONSIGLIATO)

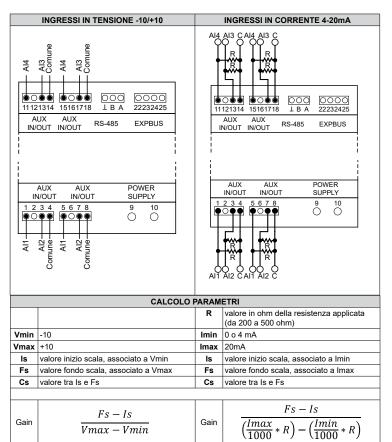
IN 4AI

INGRESSI ANALOGICI

La versione **4AI** è dotata di quattro ingressi analogici -10÷10V (compatibile 0÷10V, 0÷5V, -5÷5V, 4÷20mA con resistenza da 200 ohm).

Ingressi analogici	
Range tensione	-10÷10V, 0÷10V, 0÷5V, -5÷5V
Range corrente	0÷20mA (resistenza massima 500 ohm)

PIN OUT						
	SLOT 1	SLOT 2				
SLOT 1 SLOT 2		Al 4	11	15		
0000 11121314 15161718	AI -O +/-	Al 4	14	18		
AUX AUX IN/OUT	AI O +/- O Com O +/- AI O +/-	Al 3	13	17		
		AIS	14	18		
		Al 1	1	5		
AUX		A1 1	4	8		
IN/OUT IN/OUT		410	3	7		
0000 0000		Al 2	4	8		


OAS TUO

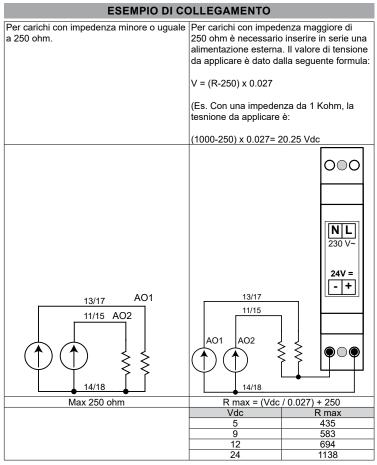
USCITE ANALOGICHE

La versione **2AO4-20mA** è equipaggiata con 2 uscite analogiche 4-20mA o 0-20mA estremamente precise e stabili, isolate galvanicamente. Esse sono attive autoalimentate per resistenze del carico fino a 250 ohm, mentre per resistenze superiori occorre inserire un alimentatore esterno con uscita in continua a 12V (fino a 750 ohm).

L'aggiornamento del segnale d'uscita viene effettuato, al massimo, ogni 200 mS. Ciascuna delle due uscite può essere abbinata ad uno qualsiasi dei parametri rilevati.

PIN OUT							
			SLOT 1	SLOT 2			
SLOT 1 SLOT 2		AO2	11	15			
11121314 15161718		AU2	14	18			
AUX AUX IN/OUT IN/OUT			13	17			
		AO1	14	18			
			1	5			
AUX AUX IN/OUT!			4	8			
1 2 3 4 5 6 7 8			3	7			
			4	8			

Is - (Gain * Vmin)


Gain

Gain

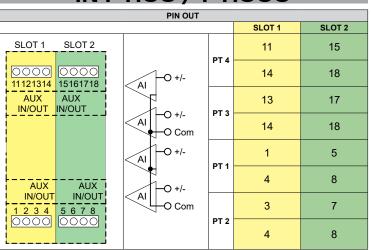
 $12 + \frac{(Cs - Offset * Gain)}{C}$

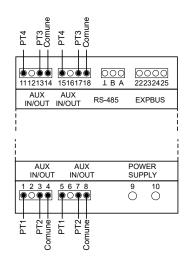
Offset

CutOff

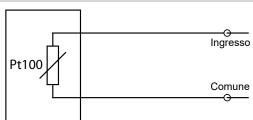
Offset

CutOff

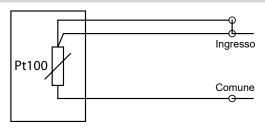

* 1000

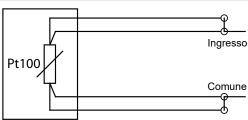

 $Is - (Gain * \frac{Imin}{1000} * R)$

Gain

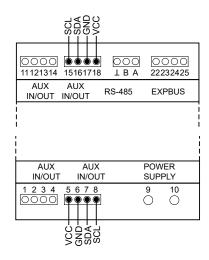

 $12 + \frac{(Cs - Offset * Gain)}{C}$

IN PTIOO / PTIOOO




PT100 CON COLLEGAMENTO A 2 FILI

PT100 CON COLLEGAMENTO A 3 FILI


PT100 CON COLLEGAMENTO A 4 FILI

COLLEGAMENTO SIO

Il bus di comunicazione SIO permette di integrare in qualsiasi momento moduli aggiuntivi della famiglia Milli Pro, dotati di ingressi/uscite digitali o analogiche o sensori di parametri ambientali e di qualità dell'aria. Gli ingressi possono essere utilizzati per stati, conteggi o acquisizioni da altri sensori, mentre le uscite possono funzionare come unità di output controllate da remoto o per applicazioni anche complesse di Energy Automation. Tutti i dispositivi della famiglia Milli Pro necessitano di collegamento ad uno strumento Electrex dotato di Bus SIO. Lunghezza massima complessiva del bus di collegamento 20m. Ogni strumento può gestire fino a 4 dispositivi Milli Pro o Milli Sensor.

PIN OUT						
				SLOT 1	SLOT 2	
SLOT 1	SLOT 2	SDA	Verde	-	7/16	
AUX	AUX IN/OUT	GND	Bianco Verde	-	6/17	
AUX	<u>-</u>	vcc	Arancio	-	5/18	
1 2 3 4	5 6 7 8	SCL	Bianco Arancio	-	8/15	

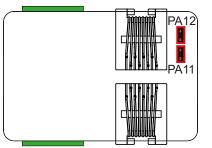
MILLI Pro I/O

I Milli Pro I/O RJ Box sono moduli di espansione dotati di ingressi/uscite digitali o analogiche equipaggiati con porte RJ45 per il collegamento rapido ai dispositivi Electrex con BUS SIO. I circuiti degli ingressi e/o delle uscite necessitano di alimentazione esterna (es. 12Vdc o 24Vdc). Box nero dimensione: 38x73x20 mm.

						SLOT					
TIPO	CODICE	DESCRIZIONE	INDIRIZZO	Α	В	С	D	Е	F	G	Н
MILLI PRO I/O RJ BOX 4DI	PFAMR0Z-N0EB	4 ingressi digitali con comuni separati	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI PRO I/O RJ BOX 4DO	PFAMR0Z-P0EB	4 uscite digitali con comuni separati	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI PRO I/O RJ BOX 2DI 2DO	PFAMR0Z-Q0EB	2 ingressi e 2 uscite digitali con comuni separati	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI PRO I/O RJ BOX 2DO RELE' PASSO	PFAMR0Z-70EB	2 uscite a relè max 30V 2A (carico resistivo)	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI PRO I/O RJ BOX 4AI	PFAMR0Z-R0EB	4 ingressi analogici -10÷10V (compatibile 0÷10V, 0÷5V, -5÷5V, 4÷20mA)	1, 2, 3, 4	1	2	3	4	1	2	3	4

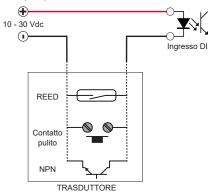
MILLI Pro Sensor

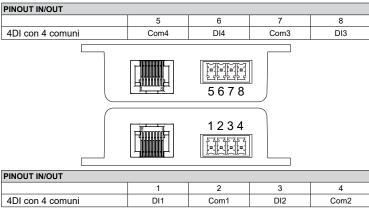
I Milli Pro Sensor sono sensori ambientali per dispositivi Electrex con Bus SIO. E' possibile collegare sullo stesso Bus fino a 4 sensori con varie combinazioni. Disponibili diversi sensori come ad esempio Temperatura, Umidità, Lux e parametri di qualità dell'aria.


							SLOT						
TIPO	CODICE	SENSORE	RANGE	ACCURATEZZA	INDIRIZZO	Α	В	С	D	Е	F	G	Н
SENSOR BUS RJ BLACK BOX TH	PFATRHQ-00B	SHT25	0 100 %RH, −40125°C	± 0,2°C e ± 1,8%	FISSO								
MILLI PRO SENSOR BUS RJ BLACK BOX T H	PFAMRHZ-00EB	SHT45	0 100 %RH, −40125°C	± 0,1°C ± 1,0%	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI PRO SENSOR BUS RJ BLACK BOX T H L P	PFAMRSZ-00EB	SHT35 + ISL29003 + MPL3115	0 100 %RH, -40125°C 0 lux to 64,000 lux 20 kPa to 110 kPa	± 0,1°C e ± 1,5% lux: ±10% P: Tipica ±1 Pa	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI PRO SENSOR BUS RJ WHITE BOX T H CO2 P	PFAMDZZ-00EB	SCD40 + SHT45 + MPL3115	0 40000 ppm 0 100 %RH, -40125°C 20 kPa to 110 kPa	±40 ppm + 5% ± 0,1°C e ± 1,5% P: Tipica ±1 Pa	1, 2, 3, 4	1	2	3	4	1	2	3	4
SENSOR BUS BLACK BOX T 0,2	PFATBAQ-00B	9808	−40125°C	± 0,25°	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI SENSOR BUS NAKED T 1	PFAT4TQ-01	9801	-1085°C	± 1°	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI SENSOR BUS NAKED T 0,2	PFAT4AQ-00	9808	-40125°C	± 0,25°	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI SENSOR BUS RJ BLACK BOX T H 0,2	PFATREQ-00B	SHT35	0 100 %RH, -40125°C	± 0,1°C e ± 1,5%	1, 2	1	2	1	2	1	2	1	2
MILLI SENSOR BUS RJ BLACK BOX DP	PFAMRDZ-00EB	SDP810-500PA	-500 Pa+500 Pa	± 3%	FISSO	1	1	1	1	1	1	1	1
MILLI SENSOR BUS RJ BLACK BOX PM	PFAMVPZ-00EB	SPS30	01.000μg/m³	± 10%	FISSO	1	1	1	1	1	1	1	1
MILLI SENSOR BUS RJ BLACK BOX OZONE	PFAMVWZ-00EB	DGS-O3 968-042	0 to 5 ppm	± 15%	FISSO								
MILLI PRO SENSOR BUS RJ BLACK BOX VOC	PFATMRVZ-00EB	SGPC3	0 1000 ppm	± 15%	1, 2, 3, 4	1	2	3	4	1	2	3	4
Monossido di Carbonio (CO)	PFAMVYZ-00EB	DGS-CO 968-034	0 1000 ppm	± 15%	FISSO								

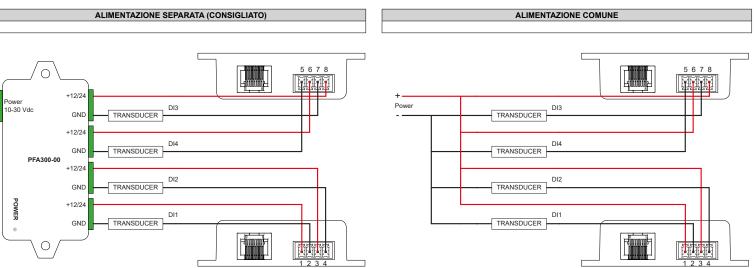
MILLI RJ BOX 3,3VDC 4DI 4COMMON

TIPO	CODICE	INDIRIZZO	DESCRIZIONE
MILLI PRO I/O RJ BOX 4DI	PFAMR0Z-N0EB	1, 2, 3, 4	4 ingressi digitali con comuni separati


INDIRIZZAMENTO

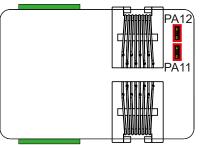

JUMPER	INDIRIZZO				
	* 1	2	3	4	
PA12		•		•	
PA11		1	•	•	
* default address					

INGRESSI DIGITALI

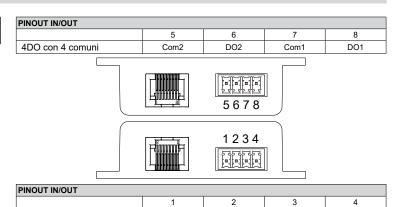

Gli ingressi digitali sono optoisolati e completi di filtro antirimbalzo programmabile. Sono normalmente utilizzati per contare impulsi generati esternamente, come ad esempio da contatori di gas (occorre un separatore galvanico secondo normativa ATEX), acqua, contapezzi, ecc. Opportunamente programmati possono anche funzionare come indicatori remoti di stato (es. ON/OFF di macchine, interruttori, ecc.). Massima frequenza di campionamento 500Hz (2ms). Richiedono un'alimentazione esterna 10-30Vdc.

Ingressi digitali a comuni separati e galvanicamente isolati					
Tensione di alimentazione (esterna)	da 10 a 30 Vdc				
Corrente assorbita	da 2 a 10mA				
Massima frequenza di conteggio	500Hz				
N.R. per contatori das occorre un separatore dalvanico secondo pormativa ATEX					

	PINOUT COLLEGAMENTO SIO CON RJ45							
FUNZIONE	COLORE							
SCL	Bianco Arancio	_\						
VCC	Arancio							
GND	Bianco Verde							
SDA	Verde							


MILLI RJ BOX 3,3VDC 4DO 4COMMON

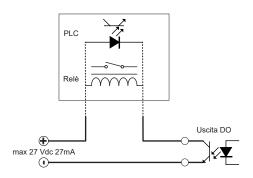
4DO con 4 comuni


TIPO	CODICE	INDIRIZZO	DESCRIZIONE
MILLI PRO I/O RJ BOX 4DO	PFAMR0Z-P0EB	1, 2, 3, 4	4 uscite digitali con comuni separati

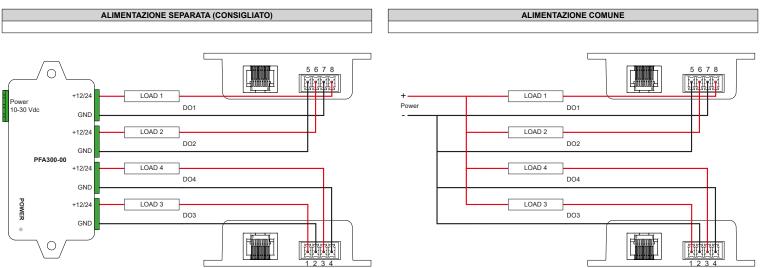
INDIRIZZAMENTO

JUMPER	INDIRIZZO					
	* 1	2	3	4		
PA12		•		•		
PA11			•	•		
* default address						

	PINOUT COLLEGAMENTO SIO CON RJ45							
FUNZIONE	COLORE							
SCL	Bianco Arancio	_\						
VCC	Arancio							
GND	Bianco Verde							
SDA	Verde							


Com3

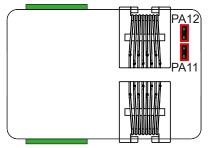
DO4


DO3

USCITE DIGITALI

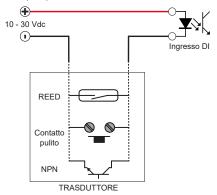
Le uscite digitali sono optoisolate a transistor con portata 27 Vdc 27 mA secondo DIN 43864. Le uscite sono programmabili come output degli allarmi interni (vedi Allarmi) o come unità di output controllate da remoto tramite linea seriale e comandi Modbus.

Uscite digitali a comuni separati e galvanicamente isolate (NPN conformi DIN 43864).					
Massima tensione applicabile	27 Vdc				
Massima corrente commutabile	27mA				

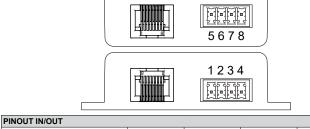

MILLI RJ BOX 3,3VDC 2DI 2DO 4COMMON

GND

TIPO	CODICE	INDIRIZZO	DESCRIZIONE				
MILLI PRO I/O RJ BOX 2DI 2DO	PFAMR0Z-Q0EB	11/34	2 ingressi e 2 uscite digitali con comuni separati				

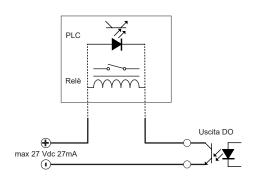

INDIRIZZAMENTO

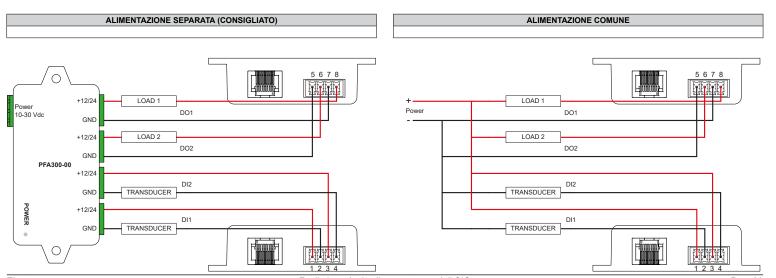
JUMPER		INDIF	RIZZO	
	* 1	2	3	4
PA12		•		•
PA11			•	•
* default	addre	SS		


INGRESSI DIGITALI

Gli ingressi digitali sono optoisolati e completi di filtro antirimbalzo programmabile. Sono normalmente utilizzati per contare impulsi generati esternamente, come ad esempio da contatori di gas (occorre un separatore galvanico secondo normativa ATEX), acqua, contapezzi, ecc. Opportunamente programmati possono anche funzionare come indicatori remoti di stato (es. ON/OFF di macchine, interruttori, ecc.). Massima frequenza di campionamento 500Hz (2ms). Richiedono un'alimentazione esterna 10-30Vdc.

Ingressi digitali a comuni separati e galva	anicamente isolati
Tensione di alimentazione (esterna)	da 10 a 30 Vdc
Corrente assorbita	da 2 a 10mA
Massima frequenza di conteggio	500Hz
N.B. per contatori das occorre un separatore	e galvanico secondo normativa ATEX

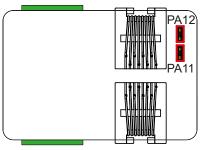

PINOUT IN/OUT				
	5	6	7	8
2DI 2DO con 4 comuni	Com2	DO2	Com1	DO1


		1	2	3	4
2DI 2DO co	on 4 comuni	DI1	Com1	DI2	Com2
	PINO	UT COLLEGAN	IENTO SIO COI	N RJ45	
FUNZIONE	COLORE				
SCL	Bianco Arancio	-			
vcc	Arancio				<u></u>

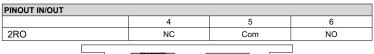
USCITE DIGITALI

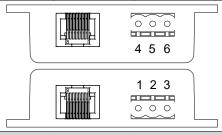
Le uscite digitali sono optoisolate a transistor con portata 27 Vdc 27 mA secondo DIN 43864. Le uscite sono programmabili come output degli allarmi interni (vedi Allarmi) o come unità di output controllate da remoto tramite linea seriale e comandi Modbus.

Uscite digitali a comuni separati e galvanicamen	nte isolate (NPN conformi DIN 43864).
Massima tensione applicabile	27 Vdc
Massima corrente commutabile	27mA



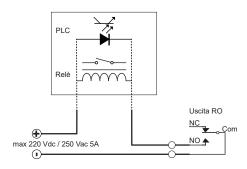
MILLI RJ BOX 3,3VDC 2DO RELE' PASSO


TIPO	CODICE	INDIRIZZO	DESCRIZIONE
MILLI PRO I/O RJ BOX 2DO RELE' PASSO	PFAMR0Z-70EB	1, 2, 3, 4	2 uscite a relè max 30V 2A (carico resistivo)



INDIRIZZAMENTO

JUMPER		INDIR	RIZZO	
	* 1	2	3	4
PA12		•		•
PA11		1	•	•
* default	addre	ss		



			_
PINOUT IN/OUT			
	1	2	3
2RO	NO	Com	NC

	PINC	OUT COLLEGAMENTO SIO CON RJ45
FUNZIONE	COLORE	
SCL	Bianco Arancio	_\
VCC	Arancio	
GND	Bianco Verde	
SDA	Verde	

USCITE RELE'

Le uscite relè sono programmabili come output di allarmi, Energy Automation o come unità di output controllate da remoto.

USCITE	
Massima tensione applicabile	220 Vdc / 250 Vac
Massima corrente commutabile	5 A
Corrente nominale	2A
Corrente continua limite, 85 °C	2A
Switching Power	60W, 62.5VA
Classificazioni contatti, UL	110VDC / 0.3A - 33W 30VDC / 2.0A - 60W 120VAC / 0.5A - 60VA 240VAC / 0.25A -60VA
Resistenza di contatto iniziale	<50mΩ at 10mA, 20mV
Frequenza di funzionamento, senza carico	50 operations/s

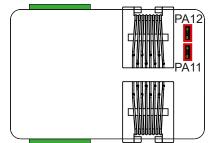
ALIMENTAZIONE COMUNE

ALIMENTAZIONE SEPARATA (CONSIGLIATO)

+12/24 +12/24 +12/24 GND GND 0

Electrex

LOAD 2 NO COM NC 1 2 3


MILLI RJ BOX 3,3VDC 4AI

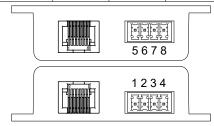
TIPO	CODICE	INDIRIZZO	DESCRIZIONE
MILLI PRO I/O RJ BOX 4AI	PFAMR0Z-R0EB		4 ingressi analogici -10÷10V (compatibile 0÷10V, 0÷5V, -5÷5V, 4÷20mA)

|--|

INDIRIZZAMENTO

JUMPER	INDIRIZZO			
	* 1	2	3	4
PA12		•		•
PA11			•	•
* default	addre	SS		

INGRESSI ANALOGICI


La versione **4AI** è dotata di quattro ingressi analogici -10÷10V (compatibile 0÷10V, 0÷5V, -5÷5V, 4÷20mA con resistenza da 200 ohm) disponibili per integrare misure provenienti da sensoristica di campo.

SORGENTE IN TENSIONE		SORGENTE IN CORRENTE	
O Al		R \$O	Al
	-10÷10V		0÷20mA
Panga tanajana	0÷10V		4÷20mA
Range tensione	0÷5V	Range corrente	
	-5÷5V		

Ingressi analogici		
Ingressi suelegiai	-10÷10V, 0÷10V, 0÷5V, -5÷5V	
Ingressi analogici	0÷20mA con resistenza da 200 ohm	

	CALCOLO PARAMETRI			
		R	valore in ohm della resistenza applicata (da 200 a 500 ohm)	
Vmin	-10	lmin	0 o 4 mA	
Vmax	+10	lmax	20mA	
Is	valore inizio scala, associato a Vmin	Is	valore inizio scala, associato a Imin	
Fs	valore fondo scala, associato a Vmax	Fs	valore fondo scala, associato a Imax	
Cs	valore tra Is e Fs	Cs	valore tra Is e Fs	
Gain	$\frac{Fs - Is}{Vmax - Vmin}$	Gain	$\frac{Fs - Is}{\left(\frac{lmax}{1000} * R\right) - \left(\frac{lmin}{1000} * R\right)}$	
Offset	$\frac{Is - (Gain * Vmin)}{Gain}$	Offset	$\frac{Is - (Gain * \frac{Imin}{1000} * R)}{Gain}$	
CutOff	$\frac{12 + \frac{(Cs - Offset * Gain)}{Gain}}{24} * 1000$	CutOff	$\frac{12 + \frac{(Cs - Offset * Gain)}{Gain}}{24} * 1000$	

PINOUT IN/AUX				
	5	6	7	8
4AI	Com	Al4	Com	Al3

PINOUT IN/AUX				
	1	2	3	4
4AI	Al1	Com	Al2	Com

PINOUT COLLEGAMENTO SIO CON RJ45		
FUNZIONE	COLORE	
SCL	Bianco Arancio	_\
VCC	Arancio	
GND	Bianco Verde	
SDA	Verde	

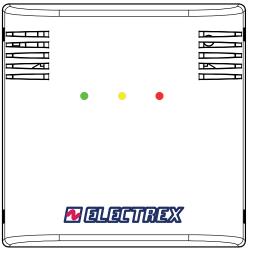
MILLI PRO SENSOR BUS RJ BLACK BOX

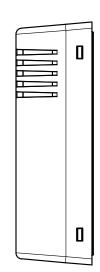
TIPO	CODICE	INDIRIZZO	RANGE	ACCURATEZZA
SENSOR BUS RJ BLACK BOX TH	PFATRHQ-00B	FISSO	0 100 %RH, -40125°C	± 0,2°C e ± 1,8%
MILLI PRO SENSOR BUS RJ BLACK BOX T H	PFAMRHZ-00EB	1, 2, 3, 4	0 100 %RH, -40125°C	± 0,1°C ± 1,0%
MILLI PRO SENSOR BUS RJ BLACK BOX T H L P	PFAMRSZ-00EB	1, 2, 3, 4	0 100 %RH, -40125°C 0 lux to 64,000 lux 20 kPa to 110 kPa	± 0,1°C e ± 1,5% lux: ±10% P: Tipica ±1 Pa
SENSOR BUS BLACK BOX T 0,2	PFATBAQ-00B	1, 2, 3, 4	−40125°C	± 0,25°
MILLI SENSOR BUS RJ BLACK BOX T H 0,2	PFATREQ-00B	1, 2	0 100 %RH, -40125°C	± 0,1°C e ± 1,5%
MILLI PRO SENSOR BUS RJ BLACK BOX VOC	PFATMRVZ-00EB	1, 2, 3, 4	0 1000 ppm	± 15%

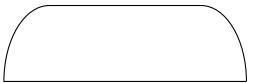
Sensori di Temperatura e Umidità Relativa (TH) con accuratezza tipica di $\pm 0.2^{\circ}$ C e $\pm 1.5\%$ con diversi involucri. Indirizzabili da 1 a 2.

Sensori di Luminosità (L) configurabili per interno (0-4.000Lux) o esterno (0-65.000Lux). Non indirizzabili.

Sensori di Pressione Atmosferica (B) da 800 mbar a 1.100 mbar. Non indirizzabili.


INDIRIZZAMENTO

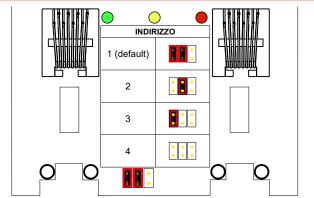



INDIRIZZAMENT	0
JUMPER	INDIRIZZO
• •	1 (default)
	2
	3
	4

MILLI PRO SENSOR BUS RJ WHITE BOX T H CO2 P

TIPO	CODICE	INDIRIZZO	RANGE	ACCURATEZZA
MILLI PRO SENSOR BUS RJ WHITE BOX T H CO2 P	PFAMDZZ-00EB	1, 2, 3, 4	0 40000 ppm 0 100 %RH, -40125°C 20 kPa to 110 kPa	±40 ppm + 5% ± 0,1°C e ± 1,5% P: Tipica ±1 Pa

Il sensore Sensor Bus RJ CO2 Traffic Light è un dispositivo che permette di misurare i valori dell'anidride carbonica o biossido di carbonio (CO2 Carbon dioxide) e di segnalare, attraverso dei led di stato, il livello di CO2 all'interno degli ambienti.


Prevede l'inserimento di tre led (verde, arancione, rosso) di segnalazione.

Caratteristiche Sensore CO2 traffic light		
Grado di protezione	IP30	
Montaggio	a parete	
Contenitore	bianco in ABS autoestinguente UL 94 V0	
Dimensioni (I x a x p)	80 x 80 x 25 mm	
Range di misura	0 ppm – 40000 ppm	
Accuratezza	±(40 ppm + 5%)	
Alimentazione	3,3V da bus SIO (non batterizzabile)	

Normative	
Sicurezza	IEC EN 61010-1
E.M.C.	EN 301489-1 e -3

Le soglie	Le soglie degli allarmi di CO2 saranno impostate in fabbrica come di seguito:				
LED		Valore CO2			
	Verde	tra 400 e 1000ppm			
•	Giallo	tra 1001ppm e 1600ppm			
Rosso		superiore a 1600 ppm			

INDIRIZZAMENTO

SENSOR BUS BLACK BOX T 0,2

TIPO	CODICE	INDIRIZZO	RANGE	ACCURATEZZA
SENSOR BUS RJ BLACK BOX TH	PFATRHQ-00B	FISSO	0 100 %RH, -40125°C	± 0,2°C e ± 1,8%
MILLI PRO SENSOR BUS RJ BLACK BOX T H	PFAMRHZ-00EB	1, 2, 3, 4	0 100 %RH, -40125°C	± 0,1°C ± 1,0%
MILLI PRO SENSOR BUS RJ BLACK BOX T H L P	PFAMRSZ-00EB	1, 2, 3, 4	0 100 %RH, -40125°C 0 lux to 64,000 lux 20 kPa to 110 kPa	± 0,1°C e ± 1,5% lux: ±10% P: Tipica ±1 Pa
SENSOR BUS BLACK BOX T 0,2	PFATBAQ-00B	1, 2, 3, 4	-40125°C	± 0,25°
MILLI SENSOR BUS RJ BLACK BOX T H 0,2	PFATREQ-00B	1, 2	0 100 %RH, -40125°C	± 0,1°C e ± 1,5%
MILLI PRO SENSOR BUS RJ BLACK BOX VOC	PFATMRVZ-00EB	1, 2, 3, 4	0 1000 ppm	± 15%

Sensori di Temperatura (T) con accuratezza tipica di $\pm 0.5^{\circ}$ C o $\pm 0.2^{\circ}$ C con diversi involucri. Indirizzabili da 1 a 4.

PINOUT CAVO				
COLORE	PIN	FUNZIONE		
Bianco arancio	1	SCL		
Arancio	2	VCC		
Bianco Verde	3	GND		
Blu	4	INDIRIZZAMENTO 1		
Bianco Blu	5	INDIRIZZAMENTOT		
Verde	6	SDA		
Bianco Marrone	7	INDIRIZZAMENTO 2		
Marrone	8	INDIRIZZAMENTO Z		
Marrone	8			

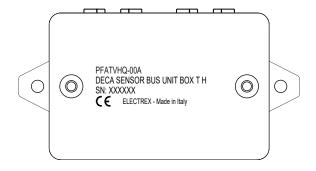
INDIRIZZAMENTO					
	COPPIA				
INDIRIZZO					
1	CHIUSA	CHIUSA			
2	APERTA	CHIUSA			
3	CHIUSA	APERTA			
4	APERTA	APERTA			

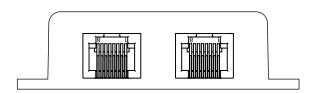
MILLI SENSOR BUS NAKED

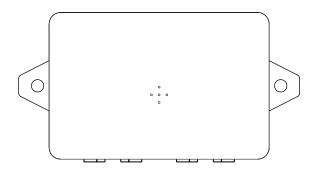
TIPO	CODICE	INDIRIZZO	RANGE	ACCURATEZZA
MILLI SENSOR BUS NAKED T 1	PFAT4TQ-01	1, 2, 3, 4	−10…85°C	± 1°
MILLI SENSOR BUS NAKED T 0,2	PFAT4AQ-00	1, 2, 3, 4	-40125°C	± 0,25°

Sensori di Temperatura (T) con accuratezza tipica di $\pm 0.5^{\circ}$ C o $\pm 0.2^{\circ}$ C con diversi involucri. Indirizzabili da 1 a 4.

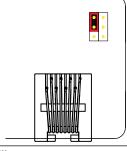
PINOUT CAVO			
COLORE	PIN	FUNZIONE	
Bianco arancio	1	SCL	
Arancio	2	VCC	
Bianco Verde	3	GND	
Blu	4	INDIRIZZAMENTO 1	
Bianco Blu	5	INDIRIZZAMENTOT	
Verde	6	SDA	
Bianco Marrone	7	INDIRIZZAMENTO 2	
Marrone	8	INDIRIZZAMENTO Z	

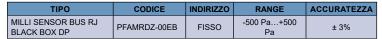

INDIRIZZAMI	INDIRIZZAMENTO						
	COPPIA						
INDIRIZZO							
1	CHIUSA	CHIUSA					
2	APERTA	CHIUSA					
3	CHIUSA	APERTA					
4	APERTA	APERTA					


MILLI SENSOR BUS RJ BLACK BOX T H 0,2



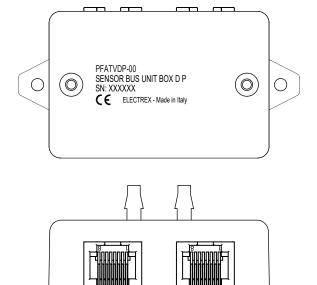
Parametri	Range	Accuratezza
Temperatura [T]	-20°C+80°C	± 0,2°C
Umidità Relativa	0100%	± 1,5% RH

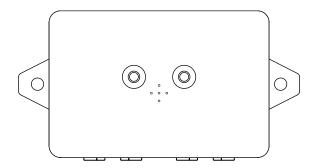

TIPO	CODICE	INDIRIZZO	RANGE	ACCURATEZZA
SENSOR BUS RJ BLACK BOX TH	PFATRHQ-00B	FISSO	0 100 %RH, -40125°C	± 0,2°C e ± 1,8%
MILLI PRO SENSOR BUS RJ BLACK BOX T H	PFAMRHZ-00EB	1, 2, 3, 4	0 100 %RH, -40125°C	± 0,1°C ± 1,0%
MILLI PRO SENSOR BUS RJ BLACK BOX T H L P	PFAMRSZ-00EB	1, 2, 3, 4	0 100 %RH, -40125°C 0 lux to 64,000 lux 20 kPa to 110 kPa	± 0,1°C e ± 1,5% lux: ±10% P: Tipica ±1 Pa
SENSOR BUS BLACK BOX T 0,2	PFATBAQ-00B	1, 2, 3, 4	-40125°C	± 0,25°
MILLI SENSOR BUS RJ BLACK BOX T H 0,2	PFATREQ-00B	1, 2	0 100 %RH, -40125°C	± 0,1°C e ± 1,5%
MILLI PRO SENSOR BUS RJ BLACK BOX VOC	PFATMRVZ-00EB	1, 2, 3, 4	0 1000 ppm	± 15%
				-



INDIRIZZAMENTO

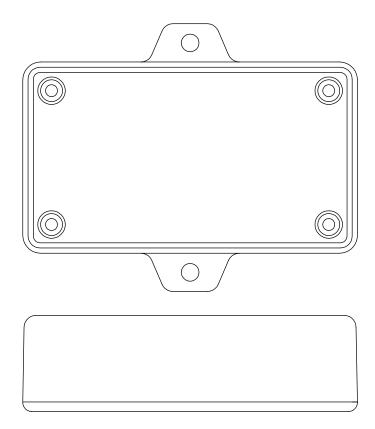
INDIRIZZAMENTO			
JUMPER INDIRIZZO			
	1 (default)		
	2		


MILLI SENSOR BUS RJ BLACK BOX DP



Sensori di Pressione Differenziale (DP) da -500 Pa a +500 Pa e Temperatura da -20°C a +80°C con accuratezza tipica ± 1 °C. Non indirizzabile.

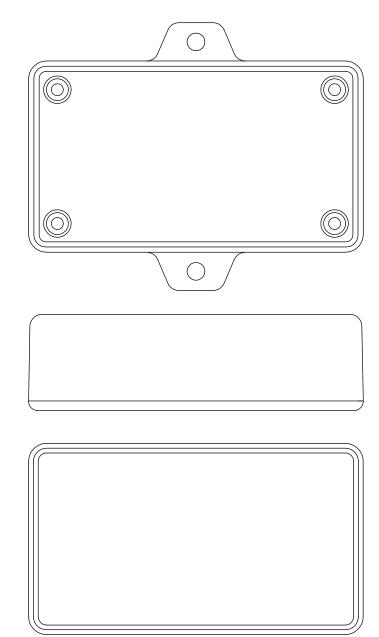
Parametri	Range	Accuratezza	
pressione differenziale in aria [DP]	-500 Pa+500 Pa	± 3%	



MILLI SENSOR BUS RJ BLACK BOX PM

TIPO	CODICE	INDIRIZZO	RANGE	ACCURATEZZA
MILLI SENSOR BUS RJ BLACK BOX PM	PFAMVPZ-00EB	FISSO	01.000µg/m³	± 10%

Sensore delle polveri sottili o particolato PM (Particulate Matter). Dimensioni particolato: PM1.0, PM2.5, PM4, PM10. Campo di misura 0...1.000 microg/m3. Non indirizzabile.


Parametri	Range	Accuratezza
PM1		
PM2,5 PM10	01.000µg/m³	± 10% tra 0-40°C

MILLI SENSOR BUS RJ BLACK BOX OZONE

TIPO	CODICE	INDIRIZZO	RANGE	ACCURATEZZA
MILLI SENSOR BUS RJ BLACK BOX OZONE	PFAMVWZ-00EB	FISSO	0 to 5 ppm	± 15%

PICO PRO D4 R5485

INSTALLATION GUIDE

COPYRIGHT

Electrex is a trademark of Akse S.r.I. All rights reserved.

It is forbidden to duplicate, adapt, transcript this document without Akse written authorization, except when regulated accordingly by the Copyright Laws.

WARRANTY

This product is covered by a warranty against material and manufacturing defects for a 24 months period from the manufacturing date.

The warranty does not cover the defects that are due to: negligent and improper use; failures caused by atmospheric hazards; acts of vandalism; wear out of materials or firmware upgrades.

Akse reserves the right, at its discretion, to repair or substitute the faulty products

The warranty is not applicable to the products that will result defective in consequence of a negligent and improper use or an operating procedure not contemplated in this manual.

RETURN AND REPAIR FORMALITIES

Akse accepts the return of instruments for repair only when authorized in advance. The transport costs are at customer charge.

RE-SHIPPING OF REPAIRED PRODUCT

The terms for re-shipment of repaired products are ex-works, i.e. the transport costs are at customer charge.

Products returned as detective but found to be perfectly working by our laboratories, will be charged a flat fee to account for checking and testing time irrespective of the warranty terms.

SAFETY

This instrument was manufactured and tested in compliance with IEC 61010-1 CAT III - 300V class 2 standards for operating voltages up to 300 VAC rms phase to neutral. In order to maintain this condition and to ensure safe operation, the user must comply with the indications and markings contained in the following instructions:

- When the instrument is received, before starting its installation, check that it is intact and no damage occurred during transport.
- Before mounting, ensure that the instrument operating voltages and the mains voltage are compatible then proceed with the installation.
- The instrument power supply needs no earth connection.
- The instrument is not equipped with a power supply fuse; a suitable external protection fuse must be foreseen by the contractor.
 Maintenance and/or repair must be carried out only by qualified, authorized
- Maintenance and/or repair must be carried out only by qualified, authorized personnel.

 If there is provided the president that and a paragraphic the instrument.
- If there is ever the suspicion that safe operation is no longer possible, the instrument must be taken out of service and precautions taken against its accidental use.

Operation is no longer safe when:

- There is clearly visible damaged
- The instrument no longer functions.
- After lengthy storage in unfavorable conditions.
- After serious damage occurred during transport

The instruments must be installed in respect of all the local regulations.

OPERATOR SAFETY

Warning: Failure to observe the following instructions may lead to a serious danger of death.

- During normal operation dangerous voltages can occur on instrument terminals and on voltage and current transformers. Energized voltage and current transformers may generate lethal voltages. Follow carefully the standard safety precautions while carrying out any installation or service operation.
- The terminals of the instrument must not be accessible by the user after the installation.
 The user should only be allowed to access the instrument front panel where the display is located.
- Do not use the digital outputs for protection functions nor for power limitation functions.
 The instrument is suitable only for secondary protection functions.
- The instrument must be protected by a breaking device capable of interrupting both the power supply and the measurement terminals. It must be easily reachable by the operator and well identified as instrument cut-off device.
- The instrument and its connections must be carefully protected against short-circuit.

Precautions: Failure to respect the following instructions may irreversibly damage to the instrument.

- The outputs and the options operate at low voltage level; they cannot be powered by any unspecified external voltage.
- The application of currents not compatible with the current inputs levels will damage to the instrument.

INFORMATION ON WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT (RAEE)

DECLARATION OF CONFORMITY

Akse hereby declares that its range of products complies with the following directives 2014/30/EU, 2014/35/EU and complies with the following product's standard EN 61010-1, EN 61010-2-030, EN 61326-1, EN 62053-22, EN 50470-1, EN 50470-3. The product has been tested in the typical wiring configuration and with peripherals conforming to the EMC directive and the LV directive.

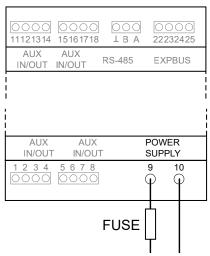
Further documentation can be downloaded from our website www.electrex.it. This document is owned by company AKSE that reserves all rights.

ES	S. CODE	P	F	A	P	4	0	1	-	X	X	X	C
1	PRODUCT												
2	PROCESSING												
3	ORIGIN												
4	MODEL												
5	CONTAINER												
6	MEASURES	←											
7	COMMUNICATION												
8	-												
9	INTERNAL CARD SLOT 1	—											
10	INTERNAL CARD SLOT 2	←											
11	POWER SUPPLY	←											
12	COLOR												

PRODUCT CODE PICO

RIF.

The product code and serial number can also be found on the label on the side of the instrument.



INDICE						
SEZIONE	COD.	RIF	VARIANTE	Pag.		
ALIMENTAZIONE				32		
LED						
SERIALE 485				32		
COMPARATORI E LOGICHE				33		
COLLEGAMENTO IN/OUT				39		

CARATTERISTICHE MECCANICHE					
Custodia Plastica autoestinguente classe V0					
Grado di protezione:	IP40 sul pannello frontale, IP20 lato morsetti				
Dimensioni:	70 x 90 x 58 mm (4 moduli DIN)				

ALIMENTAZIONE

Lo strumento è dotato di alimentazione separata. I morsetti per l'alimentazione sono numerati (9 e 10). La sezione massima dei cavi da utilizzare è 2,5 mm² se flessibili, 4 mm² se rigidi.

	IDEI	NTIF	CAZ	IONE	ALI	MEN	TAZI	ONE				
RIF.	1	2	3	4	5	6	7	8	9	10	11	12
ES. CODICE	Р	F	Α	Р	4	0	1	-	X	X	Х	С

RIF.	ALIMENTAZIONE	FUSIBILE	NOTE
1	110/120 Vac	F: 500 mA T	
2	230/240 Vac	F: 500 mA T	
7	9÷24xVac 9/36 Vdc	F: 500 mA T	L'alimentazione in continua non ha
8	15÷36Vac 18/60 Vdc	F: 500 mA T	polarità.

SERIALE RS485

Permette di collegare almeno 128 dispositivi su una linea di trasmissione lunga fino a 1200 metri

Non è possibile utilizzare dispositivi con diverso protocollo di comunicazione sullo stesso bus RS-485.

CAVO

Prevede come linea di trasmissione una coppia di conduttori intrecciati (twisted pair), genericamente indicati come A e B.

Cavi dotati di schermatura rendono maggiormente immune il bus alle interferenze elettromagnetiche esterne e riducono le interferenze elettromagnetiche generate. Diverse aziende producono cavi specificatamente sviluppati per lo standard RS-485. (in genere sezione 22-24 AWG ed impedenza caratteristica 120Ω).

E' possibile utilizzare cavo CAT.5 UTP, tuttavia le peggiori caratteristiche del cavo limitano la lunghezza massima del bus a circa 600 metri.

CABLAGGIO

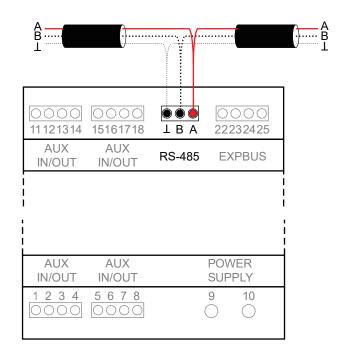
La tipologia di cablaggio è quella "entra-esci" (daisy chain). Se il cavo utilizzato è dotato di schermatura, occorre mettere a massa (PE Protective Earth) il conduttore dedicato alla schermatura in un unico punto.

VELOCITÀ CORRETTA

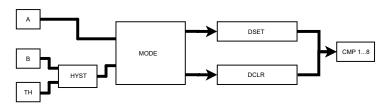
La capacità parassita della linea di trasmissione aumenta all'aumentare della lunghezza della linea, limitando la massima velocità utilizzabile. Una legge empirica fornisce i seguenti valori:

Baud (bps)	Lunghezza bus (m)
115200	85
57600	170
38400	250
19200	500
9600	1000

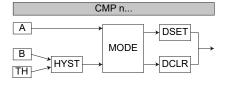
Questi valori sono conservativi: su linee correttamente cablate, in presenza di un numero ridotto di dispositivi, è possibile utilizzare velocità più elevate di quelle indicate.


TERMINAZIONE DEL BUS

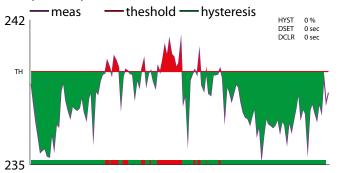
I cavi sviluppati per RS-485 hanno impedenza tipica di 120Ω ; per limitare la riflessione del segnale è opportuno inserire alla fine del bus una resistenza di terminazione dello stesso valore. Su bus RS-485 di lunghezza ridotta, configurati con basse velocità di comunicazione, è possibile non inserire le resistenze di terminazione.



LED	Descrizione
STATUS	Led giallo: pulsa in modo costante indicando il corretto funzionamento
ACTIVITY	Led verde: pulsa indicando la comunicazione della porta RS485.
POWER	Led verde: indica lo stato di accensione dello strumento.



COMPARATORS


CMP.18	ITEM DISPLAYED	AVAILABLE PARAMETERS	DEFAULT						
		A < TH			L'uscita si a	ttiva quando il segnale A è inferiore alla soglia preimpostata TH			
		A > TH			L'uscita si a	ittiva quando A supera TH			
		A < B			attivazione	se A è minore di B			
	MODE	A > B	OFF		attivazione	se A è maggiore di B			
	MODE	VAR < TH	OFF	(A-B)/B * 100 < TH	percent var	iation			
CMP.1 MODE: OFF		VAR > TH		(A-B)/B * 100 > TH	percent var	iation			
A: 000		ABVAR < TH		abs(A-B)/B * 100 < TH	00 < TH absolute percentage variation				
B: 000 TH: +0.000		ABVAR > TH		abs(A-B)/B * 100 > TH	absolute pe	rcentage variation			
HYST: 02	Α	0 508	000	Variable A to be checked	d (See varia	ble index table)			
DSET:0000.0	В	0 508	000	Variable B to be checke	d (See varia	ble index table)			
DCLR: 0000.0	TH		+0.000	Numeric value of alarm	threshold				
	HYST	0 99 %	02	Hysteresis (percentage value, referred to the threshold or variable B, for deactivation)					
		0 99 %	02	Un'isteresi elevata aumenta la stabilità ma riduce la sensibilità del comparatore.					
	DSET	0 6000 sec	0.000	Activation delay time		Parametri come DSET e DCLR devono essere coordinati con l'isteresi			
	DCLR	0 6000 sec	0.000	Deactivation delay time		per evitare comportamenti imprevisti			

COMPARATORE senza isteresi e ritardi

A > TH
038
000
+240
00
0.000
0.000

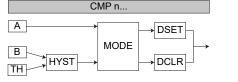
Il grafico rappresenta il comportamento di un comparatore senza isteresi, soglia (threshold) e senza tempi di ritardo per l'attivazione e la disattivazione.

LEGENDA CURVE E L	INEE						
meas (viola):	Èil va	lore misurato dal sistema (ad esempio una tensione,					
	una te	una temperatura, ecc.), che oscilla nel tempo.					
threshold (rosso):	Soglia	Soglia di attivazione/disattivazione (unica, senza isteresi).					
hysteresis (verde):	Coinc	Coincide con la soglia, poiché l'isteresi è 0%.					
Barra in basso:	Stato	dell'uscita (verde = OFF, rosso = ON).					
Parametri							
HYST (isteresi):	0 %	La soglia di disattivazione è posta al 0% sotto la					
	1	soglia di attivazione					

HYST (isteresi):	0 %	La soglia di disattivazione è posta al 0% sotto la			
		soglia di attivazione			
DSET (Ritardo attivazione)	0 sec.	nessun ritardo presente			
DCLR (Ritardo disattivazione)	0 sec.	nessun ritardo presente			

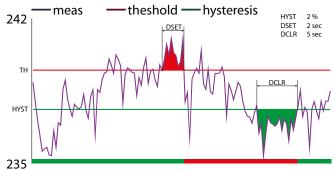
COMPORTAMENTO:

Il comparatore commuta immediatamente ogni volta che il valore misurato attraversa la soglia TH, sia in salita che in discesa.


La barra in basso mostra molte commutazioni rapide (chattering), causate dal rumore o dalle piccole oscillazioni del segnale attorno alla soglia.

Non essendoci né isteresi né ritardi, il sistema è molto sensibile e instabile.

SVANTAGGI


Il sistema è molto sensibile, commuta continuamente al minimo disturbo vicino alla soglia. Presenta instabilità, rischio di usura dei componenti, false attivazioni/disattivazioni.

COMPARATORE con isteresi e ritardi

A > TH
038
000
+240
02
0002.0
0005.0

Il grafico rappresenta il comportamento di un comparatore con isteresi, soglia (threshold) e tempi di ritardo per l'attivazione e la disattivazione.

LEGENDA CURVE E LINEE

È il valore misurato dal sistema (ad esempio una tensione,				
una temperatura, ecc.), che oscilla nel tempo.				
È la soglia di attivazione (TH). Quando il valore misurato				
supera questa soglia, il sistema può attivarsi.				
È la soglia di disattivazione (HYST), più bassa rispetto				
alla soglia di attivazione. Serve per evitare commutazioni				
rapide e instabili.				
Stato dell'uscita (verde = OFF, rosso = ON).				

Parametri

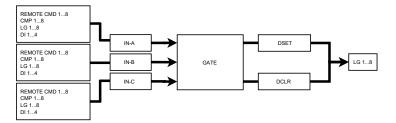
i urumetii				
HYST (isteresi):	2 %	La soglia di disattivazione è posta al 2% sotto la		
		soglia di attivazione		
DSET (Ritardo attivazione)	2 sec.	il valore misurato deve restare sopra la soglia per		
		almeno 2 secondi prima che il sistema si attivi		
DCLR (Ritardo disattivazione)	5 sec.	il valore misurato deve restare sotto la soglia di		
		isteresi per almeno 5 secondi prima che il sistema		
		si disattivi		

COMPORTAMENTO:

- 1) Il valore misurato oscilla sotto la soglia di attivazione (TH), quindi il sistema resta disattivato (barra verde in basso).
- 2) Superamento della soglia (TH): Quando la curva viola supera la soglia rossa (TH), parte il timer di attivazione (DSET).
 - Se il valore resta sopra la soglia per almeno 2 secondi (area rossa), il sistema si attiva (barra rossa in basso).
 - Se il valore scende sotto la soglia prima dei 2 secondi, il timer si azzera e il sistema resta disattivato.
- 3) Attivazione: Dopo il superamento della soglia per il tempo richiesto, il sistema si attiva (barra rossa in basso).
- 4) Disattivazione con isteresi: Quando il valore misurato scende sotto la soglia di isteresi (HYST, linea verde), parte il timer di disattivazione (DCLR).
 - Se il valore resta sotto questa soglia per almeno 5 secondi (area verde), il sistema si disattiva (barra verde in basso).
 - Se il valore risale sopra la soglia di isteresi prima dei 5 secondi, il timer si azzera e il sistema resta attivo.

VANTAGGI

Stabilità: L'isteresi impedisce che piccoli disturbi o rumore vicino alla soglia causino continue attivazioni/disattivazioni (chattering).


Affidabilità: I ritardi DSET e DCLR assicurano che solo superamenti prolungati delle soglie attivino o disattivino il sistema, filtrando i picchi brevi.

VARIABLES INDEX MEAS A e B

			DIGITAL INPUT COUNTERS				COUNTERS WITH WEIGHT			
SLOT	MEAS	T1	T2	Т3	T4	DERIVATIVE	T1	T2	T3	T4
Α	DI1	128	132	136	140	256	0	4	8	12
Α	DI2	129	133	137	141	257	1	5	9	13
Α	DI3	130	134	138	142	258	2	6	10	14
Α	DI4	131	135	139	143	259	3	7	11	15
В	DI1	144	148	152	156	260	16	20	24	28
В	DI2	145	149	153	157	261	17	21	25	29
В	DI3	146	150	154	158	262	18	22	26	30
В	DI4	147	151	155	159	263	19	23	27	31
С	DI1	160	164	168	172	264	32	36	40	44
С	DI2	161	165	169	173	265	33	37	41	45
С	DI3	162	166	170	174	266	34	38	42	46
С	DI4	163	167	171	175	267	35	39	43	47
D	DI1	176	180	184	188	268	48	52	56	60
D	DI2	177	181	185	189	269	49	53	57	61
D	DI3	178	182	186	190	270	50	54	58	62
D	DI4	179	183	187	191	271	51	55	59	63
Е	DI1	192	196	200	204	272	64	68	72	76
E	DI2	193	197	201	205	273	65	69	73	77
Е	DI3	194	198	202	206	274	66	70	74	78
Е	DI4	195	199	203	207	275	67	71	75	79
F	DI1	208	212	216	220	276	80	84	88	92
F	DI2	209	213	217	221	277	81	85	89	93
F	DI3	210	214	218	222	278	82	86	90	94
F	DI4	211	215	219	223	279	83	87	91	95
G	DI1	224	228	232	236	280	96	100	104	108
G	DI2	225	229	233	237	281	97	101	105	109
G	DI3	226	230	234	238	282	98	102	106	110
G	DI4	227	231	235	239	283	99	103	107	111
Н	DI1	240	244	248	252	284	112	116	120	124
Н	DI2	241	245	249	253	285	113	117	121	125
Н	DI3	242	246	250	254	286	114	118	122	126
Н	DI4	243	247	251	255	287	115	119	123	127

ANALOG INPUT							
SLOT	MEAS	INST	AVG	MIN	MAX	INTEGRATED	
Α	AI1	288	320	352	384	416	
Α	Al2	289	321	353	385	417	
Α	AI3	290	322	354	386	418	
Α	Al4	291	323	355	387	419	
В	AI1	292	324	356	388	420	
В	Al2	293	325	357	389	421	
В	AI3	294	326	358	390	422	
В	Al4	295	327	359	391	423	
С	AI1	296	328	360	392	424	
С	Al2	297	329	361	393	425	
С	AI3	298	330	362	394	426	
С	Al4	299	331	363	395	427	
D	AI1	300	332	364	396	428	
D	Al2	301	333	365	397	429	
D	AI3	302	334	366	398	430	
D	Al4	303	335	367	399	431	
Е	AI1	304	336	368	400	432	
Е	Al2	305	337	369	401	433	
Е	AI3	306	338	370	402	434	
Е	Al4	307	339	371	403	435	
F	AI1	308	340	372	404	436	
F	Al2	309	341	373	405	437	
F	AI3	310	342	374	406	438	
F	Al4	311	343	375	407	439	
G	AI1	312	344	376	408	440	
G	Al2	313	345	377	409	441	
G	AI3	314	346	378	410	442	
G	Al4	315	347	379	411	443	
Н	Al1	316	348	380	412	444	
Н	Al2	317	349	381	413	445	
Н	AI3	318	350	382	414	446	
Н	Al4	319	351	383	415	447	

LOGICS

LOGIC-GATE 18	ITEM DISPLAYED	AVAILABLE PARAMETERS	DEFAULT	
LOGIC-GATE 1	GATE	OR, NOR, AND, NAND, XOR, XNOR	OR	Logical operator selection (see table below)
GATE: OR	IN-A	NONE, CMD18, CMP18, LG18,	NONE	
IN-A: NONE	IN-B		NONE	Input type selection
IN-B: NONE IN-C: NONE	IN-C	DI.A14, DI.B14, S0.16	NONE	
DSET: 0000.0	DSET	0 6000 sec	0.000.0	Activation delay time
DCLR: 0000.0	DCLR	0 6000 sec	0.000.0	Deactivation delay time

L'immagine rappresenta un sistema digitale dove più segnali provenienti da comparatori , logiche, ingressi digitali o comandi remoti vengono combinati tramite una logica selezionabile (GATE), con la possibilità di introdurre ritardi temporali sia per l'attivazione che per la disattivazione dell'uscita.

Le porte logiche possono essere collegate in cascata.

1. INGRESSI

IN-A, IN-B, IN-C

Questi sono ingressi digitali che provengono da comparatori (CMP 1...8), da altre logiche (LG 1...8), da ingressi digitali (DI 1...4) o da comandi remoti (CMD 1...8) come indicato nei blocchi a sinistra.

Ogni ingresso può essere il risultato di una comparazione (ad esempio, una soglia superata) o di una logica precedente.

2. GATE (porta logica selezionabile)

Questo blocco consente di scegliere il tipo di operazione logica da applicare agli ingressi (ad esempio AND, OR, XOR, ecc.).

La scelta della porta logica determina come vengono combinati i segnali in ingresso per generare l'uscita.

In pratica, puoi decidere se l'uscita si attiva solo quando tutti gli ingressi sono attivi (AND), almeno uno è attivo (OR), ecc.

3. DSET (Delay Set)

Questo blocco introduce un ritardo temporale per l'attivazione dell'uscita.

Significa che, anche se la condizione logica è soddisfatta, l'uscita verrà attivata solo se la condizione rimane vera per tutto il tempo impostato su DSET.

4. DCLR (Delay Clear)

Questo blocco introduce un ritardo temporale per la disattivazione dell'uscita.

L'uscita verrà disattivata solo se la condizione logica rimane falsa per tutto il tempo impostato su DCLR.

5. Uscita (LG 1...8)

L'uscita è il risultato della combinazione logica e dei ritardi temporali applicati.

Può essere utilizzata per comandare altri dispositivi, attivare allarmi, inviare segnali di controllo, ecc

FUNZIONAMENTO COMPLESSIVO

I comparatori generano segnali digitali in base alle condizioni impostate (ad esempio, superamento di soglia).

Questi segnali vengono inviati agli ingressi IN-A, IN-B, IN-C.

Il blocco GATE applica la logica selezionata per decidere se l'uscita deve essere attiva o meno.

DSET e DCLR aggiungono ritardi per evitare commutazioni rapide o instabili, aumentando la robustezza del sistema.

L'uscita LG 1...8 riflette lo stato finale, pronto per essere utilizzato da altri sistemi o dispositivi.

VANTAGGI

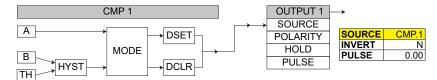
Flessibilità: Puoi scegliere la logica più adatta alle tue esigenze.

Robustezza: I ritardi temporali evitano commutazioni indesiderate dovute a disturbi o fluttuazioni brevi.

Modularità: Puoi combinare più comparatori e logiche per realizzare funzioni di controllo complesse.

ESEMPI CONFIGURAZIONE COMPARATORI E LOGICHE

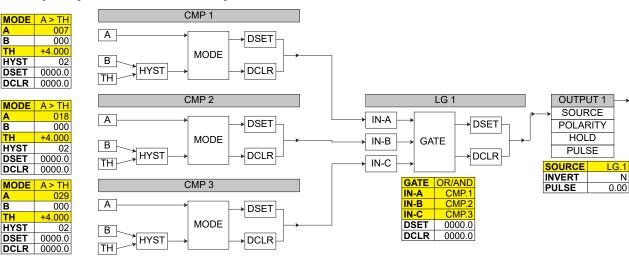
ATTIVAZIONE USCITA DIGITALE, SE LA CORRENTE TRIFASE SUPERA LA SOGLIA


Il comparatore diventa ATTIVO quando la variabile A, (Corrnete trifase), supera il valore di soglia TH (5A).

Il comparatore diventa DISATTIVO quando la variabile A, (Corrnete trifase), scende sotto il valore di soglia TH ed il relativo valore di isteresi (5A-2% = 4,9A).

Non sono presenti tempi di attivazione o disattivazione.

L'uscita digitale segue l'andamento dello stato del comparatore.


ATTIVAZIONE USCITA DIGITALE, SE UNA O TUTTE LE CORRENTI DI FASE SUPERANO IL VALORE DI SOGLIA

Sono presenti tre comparatori, uno per ogni fase di corrente, che diventano ATTIVI quando la variabile A, (Corrnete di fase), supera il valore di soglia TH (4A). I comparatori diventano DISATTIVI quando la variabile A, (Corrnete di fase), scende sotto il valore di soglia TH ed il relativo valore di isteresi (4A-2% = 3,92A).

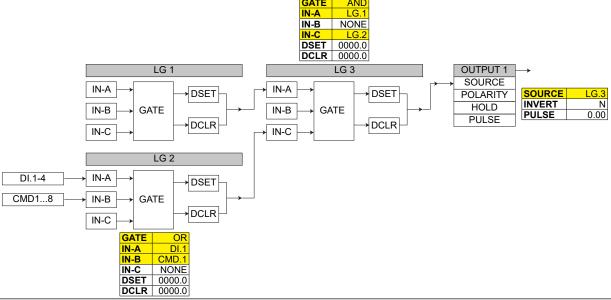
I comparatori diventano DISATTIVI quando la variabile A, (Corrnete di fase), scende sotto il valore di soglia TH ed il relativo valore di isteresi (4A-2% = 3,92A Non sono presenti tempi di attivazione o disattivazione.

La logica LG1 diventa attiva in base alla mdalità del GATE selezionata. Nella modalità OR è sufficiente un qualsiasi comparatore attivo, mentre nella modalità AND, è necessario che tutti i comparatori siano attivi.

L'uscita digitale segue l'andamento dello stato della logica LG 1

L'USCITA VIENE ABILITATA SOLO CON INGRESSO DIGITALE O REMOTE COMMAND ATTIVI

FUNZIONAMENTO LOGICO


LG 2 valuta la logica OR tra DI.1 (un ingresso digitale) e CMD.1 (un comando). Se almeno uno dei due è attivo, l'uscita di LG 2 è attiva.

LG 1 valuta una logica (non specificata) tra i suoi tre ingressi, e la sua uscita va a LG 3.

LG 3 riceve come ingressi l'uscita di LG 1 (IN-A) e l'uscita di LG 2 (IN-C), e applica una logica AND:

L'uscita di LG 3 sarà attiva solo se entrambe le condizioni (LG 1 e LG 2) sono vere contemporaneamente.

OUTPUT 1 si attiva solo se la condizione di LG 3 è vera, senza inversioni né impulsi temporizzati.

ATTIVAZIONE USCITA 1 PER VARIAZIONE TENSIONE E USCITA 2 PER VARIAZIONE FREQUENZA

L'immagine mostra uno schema logico di automazione in cui quattro comparatori (CMP 1...4) analizzano segnali analogici e, tramite logiche programmabili, comandano due uscite digitali (OUTPUT 1 e OUTPUT 2).

Le uscite vengono attivate in base a variazioni di tensione e frequenza, come indicato dal titolo.

1. Comparatori (CMP 1 - CMP 4)

Ogni comparatore riceve un segnale d'ingresso (A) e lo confronta con una soglia (TH).

La modalità di confronto può essere A > TH (attiva quando il segnale supera la soglia) oppure A < TH (attiva quando il segnale scende sotto la soglia). HYST introduce isteresi (2%) per evitare commutazioni rapide dovute a piccoli disturbi.

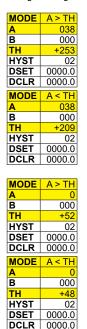
DSET e DCLR (qui impostati a zero) permetterebbero di inserire ritardi in attivazione/disattivazione, ma in questo caso la commutazione è immediata.

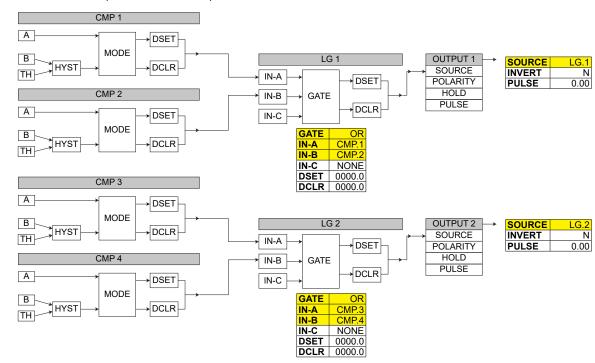
2. Logiche (LG 1 e LG 2)

LG 1 riceve în ingresso le uscite dei comparatori CMP 1 e CMP 2. La logica scelta è OR: l'uscita di LG 1 sarà attiva se almeno uno tra CMP 1 o CMP 2 è attivo. LG 2 riceve in ingresso le uscite dei comparatori CMP 3 e CMP 4. Anche qui la logica è OR: l'uscita di LG 2 sarà attiva se almeno uno tra CMP 3 o CMP 4 è attivo. Anche per questi blocchi, DSET e DCLR sono a zero, quindi non ci sono ritardi.

3. Uscite digitali (OUTPUT 1 e OUTPUT 2)

OUTPUT 1 è comandata da LG 1. Si attiva se almeno uno tra CMP 1 e CMP 2 è attivo (cioè se si verifica una delle condizioni di variazione di tensione impostate). OUTPUT 2 è comandata da LG 2. Si attiva se almeno uno tra CMP 3 e CMP 4 è attivo (cioè se si verifica una delle condizioni di variazione di frequenza impostate). Le opzioni di inversione e impulso sono disattivate (INVERT N, PULSE 0.00).


CINTECI


CMP 1 e CMP 2 monitorano variazioni di tensione: se almeno uno rileva la condizione impostata, si attiva OUTPUT 1.

CMP 3 e CMP 4 monitorano variazioni di frequenza: se almeno uno rileva la condizione impostata, si attiva OUTPUT 2.

L'uso dell'isteresi evita commutazioni rapide indesiderate.

La logica OR garantisce che basta una sola condizione per attivare l'uscita corrispondente.

REPLICARE GLI INGRESSI DIGITALI SULLE USCITE

Configurazione semplice e diretta per replicare gli ingressi digitali sulle uscite digitali corrispondenti.

FUNZIONAMENTO

- 1. Ingressi digitali (Dl.1, Dl.2, Dl.3, Dl.4). Sono segnali digitali in ingresso al sistema, ad esempio provenienti da sensori, interruttori o altri dispositivi digitali.
- Blocchi DIGITAL OUT. Ogni ingresso digitale è collegato a un blocco di uscita digitale (DIGITAL OUT).
 Questi blocchi sono configurati per trasmettere lo stato dell'ingresso direttamente all'uscita corrispondente.

3. Parametri configurati

SOURCE: È impostato sull'ingresso digitale corrispondente (es. per DIGITAL OUT collegato a DI.1, SOURCE = DI.1).

Questo significa che l'uscita digitale riflette esattamente lo stato dell'ingresso DI.1.

INVERT: Impostato su "N" (No), quindi l'uscita non è invertita rispetto all'ingresso.

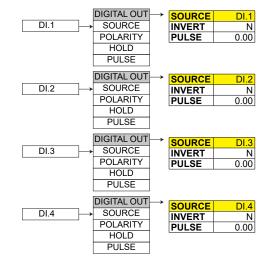
Se l'ingresso è alto (1), l'uscita sarà alta; se l'ingresso è basso (0), l'uscita sarà bassa.

PULSE: Impostato a 0.00, quindi non viene generato alcun impulso temporizzato o segnale a durata limitata.

L'uscita rimane stabile e segue l'ingresso in modo continuo.

4. Altri parametri non utilizzati

POLARITY, HOLD: Non sono configurati o utilizzati in questo schema, quindi non influenzano il comportamento.


IN SINTESI

Questo schema permette di replicare fedelmente lo stato degli ingressi digitali sulle uscite digitali senza modifiche o ritardi. È utile per:

Monitorare direttamente lo stato di sensori o interruttori.

Trasmettere segnali digitali a dispositivi esterni senza elaborazione.

Implementare funzioni di passaggio diretto o "bypass" digitale.

IN / OUT CONNECTION

Con il codice prodotto e la tabella seguente, è possibile identificare la variante corretta.

RIF.	1	2	3	4	5	6	7	8	9	10	11	12
ES. CODICE	Р	F	Α	P	4	0	1	-	0	0	X	С

RIF.	9	10	
OPZIONE	SLOT 1	SLOT 2	Pagina
NON DISPONIBILE	0	0	
4DI	N	N	36
4DO	С	С	37
2DI 2DO	Q	Q	38
4AI	R	R	39
2AO 4-20 mA	6	6	39
4PT100/1000	U	U	40
SIO		Z	41

ESEMPIO		9	10
MODELLO		SLOT 1	SLOT 2
PFAP401-NC2C	PICO PRO D4 RS485 230-240V 4DI 4DO	4DI	4DO
PFAP401-RN2C	PICO PRO D4 RS485 230-240V 4AI 4DI	4AI	4DI
PFAP401-RQ2C	PICO PRO D4 RS485 230-240V 4AI 2DI 2DO	4AI	2DI 2DO
PFAP401-UQ2C	PICO PRO D4 RS485 230-240V 4PT100 2DI 2DO	4PT100	2DI 2DO

PINOUT IN/OUT								
		SLC	OT 1		SLOT 2			
	11	12	13	14	15	16	17	18
4DI	DI4 +	DI4 -	DI3 +	DI3 -	DI4 +	DI4 -	DI3 +	DI3 -
4DO	DO2 +	DO2 -	DO1+	DO1 -	DO2 +	DO2 -	DO1 +	DO1 -
2DI 2DO	DO2 +	DO2 -	DO1 +	DO1 -	DO2 +	DO2 -	DO1 +	DO1 -
2AO 4-20 mA	AO2	-	AO1	GND	AO2	-	AO1	GND
4AI	Al4	-	Al3	GND	Al4	-	AI3	GND
4PT100/1000	PT4	-	PT3	GND	PT4	-	PT3	GND
4NTC	NTC4	-	NTC3	GND	NTC4	-	NTC3	GND
SIO	SCL	SDA	GND	VCC	SCL	SDA	GND	VCC

SLOT 1	SLOT 2	
0000 11121314	0000 15161718	DOO DOO L B A 22232425
AUX IN/OUT	AUX IN/OUT	RS-485 EXPBUS
AUX IN/OUT	AUX IN/OUT	POWER SUPPLY
1 2 3 4	5 6 7 8	9 10

PINOUT IN/OUT								
SLOT 1				SLOT 2				
1	2	3	4	5	6	7	8	
DI1+	DI1 -	DI2 +	DI2 -	DI1 +	DI1 -	DI2 +	DI2 -	
DO4 +	DO4 -	DO3 +	DO3 -	DO4 +	DO4 -	DO3 +	DO3 -	
DI1+	DI1 -	DI2 +	DI2 -	DI1 +	DI1 -	DI2 +	DI2 -	
Al1	-	Al2	GND	Al1	-	Al2	GND	
PT1	-	PT2	GND	PT1	-	PT2	GND	
NTC1	-	NTC2	GND	NTC1	-	NTC2	GND	
VCC	GND	SDA	SCL	VCC	GND	SDA	SCL	
	DI1 + DO4 + DI1 + AI1 PT1 NTC1	1 2 DI1 + DI1 - DO4 + DO4 - DI1 + DI1 - AI1 - PT1 - NTC1 -	1 2 3 DI1 + DI1 - DI2 + DO4 + DO4 - DO3 + DI1 + DI1 - DI2 + AI1 - AI2 PT1 - PT2 NTC1 - NTC2	1 2 3 4 DI1 + DI1 - DI2 + DI2 - DO4 + DO4 - DO3 + DO3 - DI1 + DI1 - DI2 + DI2 - AI1 - AI2 GND GND PT1 - PT2 GND NTC1 - NTC2 GND	1 2 3 4 5 DI1+ DI1- DI2+ DI2- DI1+ DO4+ DO4- DO3+ DO3- DO4+ DI1+ DI1- DI2+ DI2- DI1+ AI1 - AI2 GND AI1 PT1 - PT2 GND PT1 NTC1 - NTC2 GND NTC1	1 2 3 4 5 6 DI1+ DI1- DI2+ DI2- DI1+ DI1- D04+ D04- D03+ D03- D04+ D04- DI1+ DI1- DI2+ DI2- DI1+ DI1- AI1 - AI2 GND AI1 - PT1 - PT2 GND PT1 - NTC1 - NTC2 GND NTC1 -	1 2 3 4 5 6 7 DI1 + DI1 - DI2 + DI2 - DI1 + DI1 - DI2 + DO4 + DO4 - DO3 + DO3 - DO4 + DO4 - DO3 + DI1 + DI1 - DI2 + DI2 - DI1 + DI1 - DI2 + AI1 - AI2 GND AI1 - AI2 PT1 - PT2 GND PT1 - PT2 NTC1 - NTC2 GND NTC1 - NTC2	

Internal module types

- 4DI 4COMMON: 4 digital inputs with separate commons
- 4D0 4COMMON: 4 digital outputs with separate commons
- 2DI 2DO 4COMMON: 2 digital inputs and 2 digital outputs with separate commons
- **4AI**: 4 analog inputs -10÷10V (compatible 0÷10V, 0÷5V, -5÷5V, 4÷20mA)
- 2AO 4-20mA: 2 analog outputs 4-20mA self-powered for a load up to 250 ohm and to be powered for higher loads
 - 4PT100 or 4PT1000: for respective sensors
 - SIO Bus: for connecting Milli Pro I/O and Milli Pro Sensor

Digital Inputs

The 2DI or 4DI versions are supplied with opto-isolated digital inputs with separate common terminals and equipped with programmable anti-bounce filter. The inputs are normally used to count externally generated pulses, such as gas meters (a galvanic separator is required according to ATEX regulations), water, piece counters, etc. Maximum sampling frequency 500Hz (2ms). The inputs can also function as remote status indicators (e.g. ON/OFF of machines, switches, etc.). They require an external 10-30Vdc power supply.

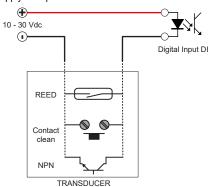
Input / Output Features (depending on version)						
	Galvanically insulated					
	Programmable functionality: external pulse count, ON/OFF state detection , tariff changeover					
Digital inputs (with separate commons)	Programmable anti-bound e.g. 10Hz, 100Hz (500Hz for versions 2DI 2DC					
	External powered needed	10-30Vdc				
	Current absorbed	2 10mA				

Analogue Inputs and PT100, PT1000

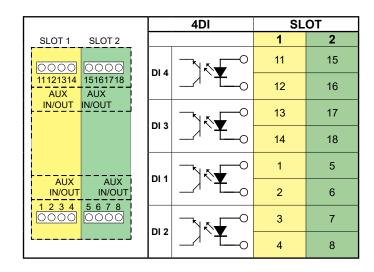
The 4Al version is equipped with four analogue inputs -10÷10V (compatible 0÷10V, 0÷5V, -5÷5V, 4÷20mA with 200 ohm resistance). The 4PT100, 4PT1000 versions have 4 inputs for the respective sensors.

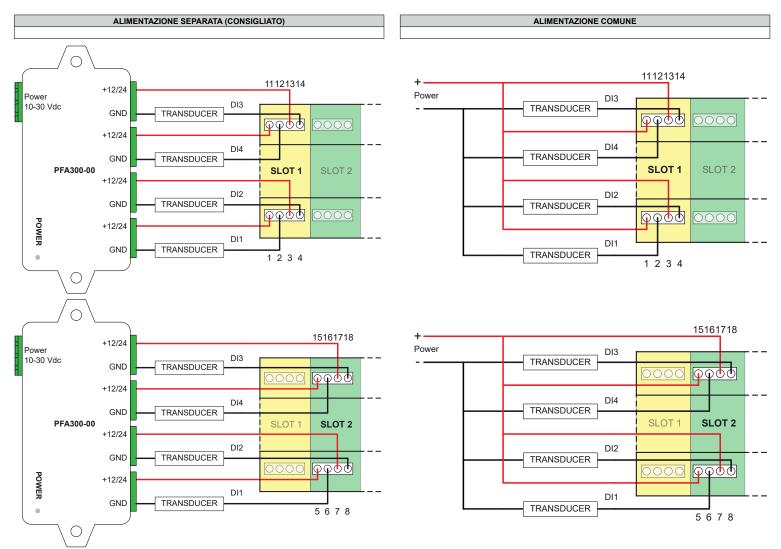
Input / Output Features (depending on version)					
	-10÷10V, 0÷10V, 0÷5V, -5÷5V				
Analogue inputs	4÷20mA with 200 ohm resistance				

Digital Outputs


The **2DO or 4DO 4COMMONS** versions are equipped with opto-isolated transistor outputs with a capacity of 27 Vdc 27 mA according to DIN 43864. The outputs are programmable for the transmission of pulses, including weighted ones, or as outputs of internal alarms (see Alarms paragraph) or as output units controlled remotely via serial line and Modbus

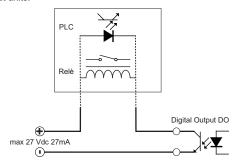
Input / Output Features (depending on version)						
Digital outputs (with separate commons)	Galvanically insulated					
	Programmable function: weighted pulse outputs, alarm signaling control outputs.					
	NPN compliant with DIN 43864 (max 27Vdc, 27mA)					

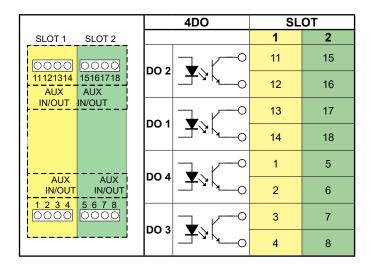

IN 4DI 4COMMON

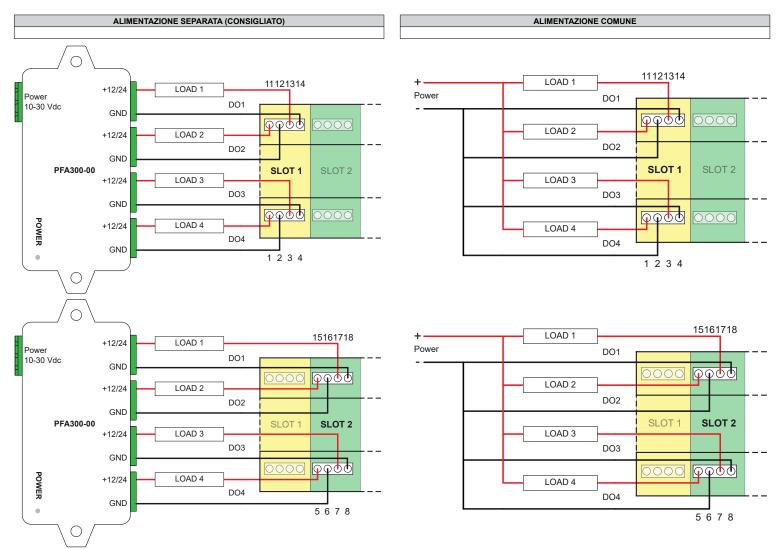

DIGITAL INPUTS

The digital inputs are optoisolated and complete with programmable anti-bounce filter. They are normally used to count externally generated pulses, such as gas meters (a galvanic separator is required according to ATEX regulations), water, piece counters, etc. Appropriately programmed they can also function as remote status indicators (e.g. ON/ OFF of machines, switches, etc.). Maximum sampling frequency 500Hz (2ms). An external 10-30Vdc power supply is required.

INPUTS	
Power supply voltage (external)	from 10 to 30 Vdc
Current consumption	from 2 to 10 mA
Maximum counting frequency	500Hz
Note: for gas meters a galvanic separator is required according to ATEX regulation	ins

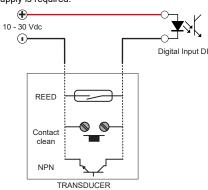



OUT 4DO 4COMMON


DIGITAL OUTPUTS

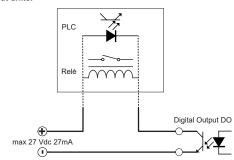
The digital outputs are opto-isolated transistors, rated as 27 Vdc 27 mA according to DIN 43864. They are programmable as alarm or Energy Automation outputs or as remotely controlled output units.

OUTPUTS (Optoisolated transistor digital outputs (NPN) according to DIN 43864 standard.)					
Maximum applicable voltage	27 Vdc				
Maximum switchable current	27mA				



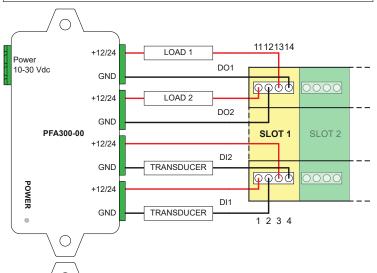
IN/OUT 2DI2DO 4COMMON

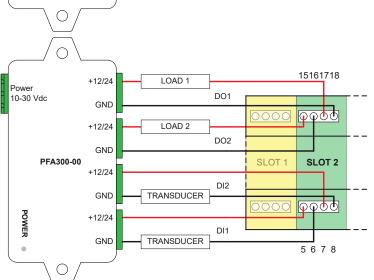
DIGITAL INPUTS

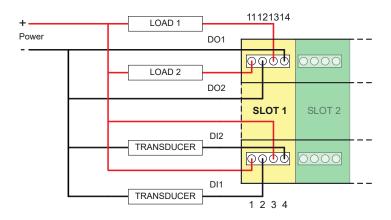

The digital inputs are optoisolated and complete with programmable anti-bounce filter. They are normally used to count externally generated pulses, such as gas meters (a galvanic separator is required according to ATEX regulations), water, piece counters, etc. Appropriately programmed they can also function as remote status indicators (e.g. ON/ OFF of machines, switches, etc.). Maximum sampling frequency 500Hz (2ms). An external 10-30Vdc power supply is required.

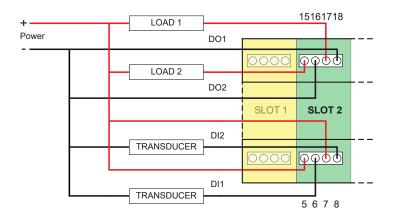
INPUTS	
Power supply voltage (external)	from 10 to 30 Vdc
Current consumption	from 2 to 10 mA
Maximum counting frequency	500Hz
Note: for gas meters a galvanic separator is required according to ATE	X regulations

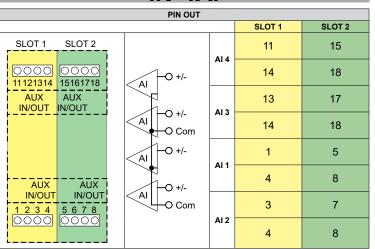
DIGITAL OUTPUTS

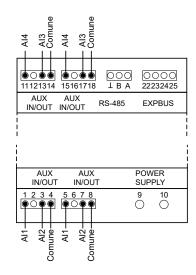

The digital outputs are opto-isolated transistors, rated as 27 Vdc 27 mA according to DIN 43864. They are programmable as alarm or Energy Automation outputs or as remotely controlled output units.

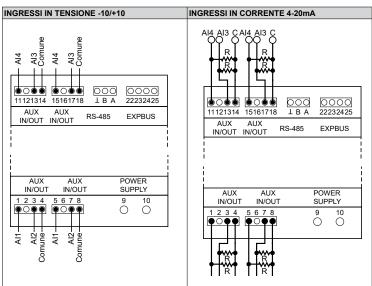

OUTPUTS (Optoisolated transistor digital outputs (NPN) according to DIN 43864 standard.)					
Maximum applicable voltage	27 Vdc				
Maximum switchable current	27mA				


	2DI2DO	SL	ОТ
SLOT 1 SLOT 2		1	2
0000 0000		11	15
11121314 15161718 AUX AUX		12	16
IN/OUT IN/OUT	DO J.	13	17
		14	18
	DI 1	1	5
AUX AUX IN/OUT IN/OUT		2	6
1 2 3 4 5 6 7 8 0000	DI 2	3	7
		4	8


ALIMENTAZIONE COMUNE


ALIMENTAZIONE SEPARATA (CONSIGLIATO)





IN 4AI

		R	valore in ohm della resistenza applicata (da 200 a 500 ohm)
Vmin	-10	lmin	0 o 4 mA
Vmax	+10	lmax	20mA
Is	valore inizio scala, associato a Vmin	Is	valore inizio scala, associato a Imin
Fs	valore fondo scala, associato a Vmax	Fs	valore fondo scala, associato a lmax
Cs	valore tra Is e Fs	Cs	valore tra Is e Fs
Gain	$\frac{Fs - Is}{Vmax - Vmin}$	Gain	$\frac{Fs - Is}{\left(\frac{lmax}{1000} * R\right) - \left(\frac{lmin}{1000} * R\right)}$
Offset	$\frac{Is - (Gain * Vmin)}{Gain}$	Offset	$\frac{Is - (Gain * \frac{Imin}{1000} * R)}{Gain}$
CutOff	$\frac{12 + \frac{(Cs - Offset * Gain)}{Gain}}{24} * 1000$	CutOff	$\frac{12 + \frac{(Cs - Offset * Gain)}{Gain}}{24} * 1000$

CALCOLO PARAMETRI

OAS TUO

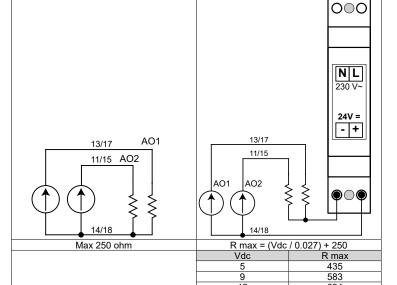
PIN OUT									
SLOT 1 SLOT 2	AO2	11	15						
0000 0000 11121314 15161718		14	18						
AUX AUX IN/OUT IN/OUT		13	17						
	A01	14	18						
		1	5						
AUX AUX IN/OUT!		4	8						
1 2 3 4 5 6 7 8		3	7						
		4	8						

USCITE ANALOGICHE

La versione **2AO4-20mA** è equipaggiata con 2 uscite analogiche 4-20mA o 0-20mA estremamente precise e stabili, isolate galvanicamente. Esse sono attive autoalimentate per resistenze del carico fino a 250 ohm, mentre per resistenze superiori occorre inserire un alimentatore esterno con uscita in continua a 12V (fino a 750 ohm).

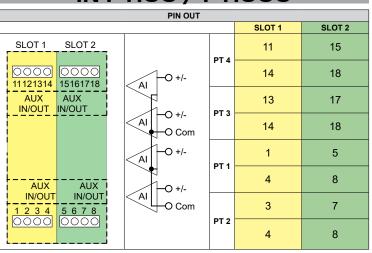
L'aggiornamento del segnale d'uscita viene effettuato, al massimo, ogni 200 mS. Ciascuna delle due uscite può essere abbinata ad uno qualsiasi dei parametri rilevati.

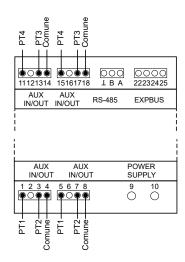
CONNECTION EXAMPLE

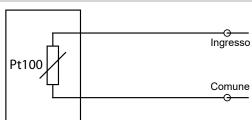

For loads with impedance less than or equal to 250 ohms.

For loads with higher impedance of 250 ohms it is necessary to include in series an external power supply. The voltage to be applied is given by the following formula:

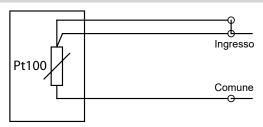
V = (R-250) x 0.027

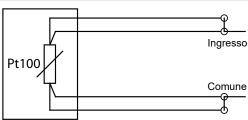

(E.g. with an impedance of 1 Kohm, the voltage to be applied is:


(1000-250) x 0.027= 20.25 Vdc

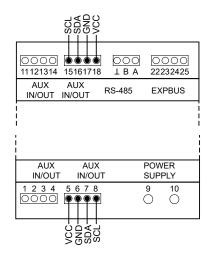

1138

IN PTIOO / PTIOOO




PT100 CON COLLEGAMENTO A 2 FILI

PT100 CON COLLEGAMENTO A 3 FILI


PT100 CON COLLEGAMENTO A 4 FILI

SIO CONNECTION

The SIO communication bus allows you to integrate additional modules of the Milli Pro family at any time, equipped with digital or analog inputs/outputs or sensors of environmental parameters and air quality. The inputs can be used for statuses, counts or acquisitions from other sensors, while the outputs can function as remotely controlled output units or for even complex Energy Automation applications. All devices of the Milli Pro family require connection to an Electrex instrument equipped with SIO Bus. Maximum overall length of the connection bus 20m. Each instrument can manage up to 4 Milli Pro or Milli Sensor devices.

PIN OUT						
			SLOT 1	SLOT 2		
SLOT 1 SLOT 2	SDA	Verde	-	7/16		
AUX AUX IN/OUT IN/OUT	GND	Bianco Verde	-	6/17		
AUX AUX	vcc	Arancio	-	5/18		
1 2 3 4 5 6 7 8	SCL	Bianco Arancio	-	8/15		

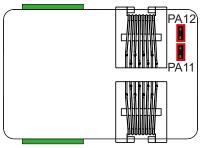
MILLI Pro I/O

The Milli Pro I/O RJ Box are expansion modules equipped with digital or analog inputs/outputs equipped with RJ45 ports for quick connection to Electrex devices with SIO BUS. The input and/or output circuits require external power supply (e.g. 12Vdc or 24Vdc). Black box size: 38x73x20 mm.

						SLOT						
TYPE	CODE	DESCRIPTION	ADDRESS	Α	В	С	D	Е	F	G	1	
MILLI PRO I/O RJ BOX 4DI	PFAMR0Z-N0EB	4 ingressi digitali con comuni separati	1, 2, 3, 4	1	2	3	4	1	2	3	4	
MILLI PRO I/O RJ BOX 4DO	PFAMR0Z-P0EB	4 uscite digitali con comuni separati	1, 2, 3, 4	1	2	3	4	1	2	3	4	
MILLI PRO I/O RJ BOX 2DI 2DO	PFAMR0Z-Q0EB	2 ingressi e 2 uscite digitali con comuni separati	1, 2, 3, 4	1	2	3	4	1	2	3	4	
MILLI PRO I/O RJ BOX 2DO RELE' PASSO	PFAMR0Z-70EB	2 uscite a relè max 30V 2A (carico resistivo)	1, 2, 3, 4	1	2	3	4	1	2	3	4	
MILLI PRO I/O RJ BOX 4AI	PFAMR0Z-R0EB	4 ingressi analogici -10÷10V (compatibile 0÷10V, 0÷5V, -5÷5V, 4÷20mA)	1, 2, 3, 4	1	2	3	4	1	2	3	4	

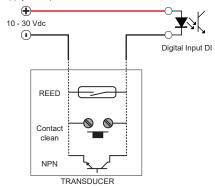
MILLI Pro Sensor

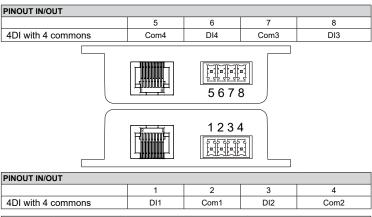
The Milli Pro Sensors are environmental sensors for Electrex devices with SIO Bus. It is possible to connect up to 4 sensors on the same Bus with various combinations. Different sensors are available such as Temperature, Humidity, Lux and air quality parameters.


							SLOT						
TYPE	CODE	SENSOR	RANGE	ACCURACY	ADDRESS	Α	В	С	D	Е	F	G	Н
SENSOR BUS RJ BLACK BOX TH	PFATRHQ-00B	SHT25	0 100 %RH, −40125°C	± 0,2°C e ± 1,8%	FIXED								
MILLI PRO SENSOR BUS RJ BLACK BOX T H	PFAMRHZ-00EB	SHT45	0 100 %RH, −40125°C	± 0,1°C ± 1,0%	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI PRO SENSOR BUS RJ BLACK BOX T H L P	PFAMRSZ-00EB	SHT35 + ISL29003 + MPL3115	0 100 %RH, -40125°C 0 lux to 64,000 lux 20 kPa to 110 kPa	± 0,1°C e ± 1,5% lux: ±10% P: Tipica ±1 Pa	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI PRO SENSOR BUS RJ WHITE BOX T H CO2 P	PFAMDZZ-00EB	SCD40 + SHT45 + MPL3115	0 40000 ppm 0 100 %RH, -40125°C 20 kPa to 110 kPa	±40 ppm + 5% ± 0,1°C e ± 1,5% P: Tipica ±1 Pa	1, 2, 3, 4	1	2	3	4	1	2	3	4
SENSOR BUS BLACK BOX T 0,2	PFATBAQ-00B	9808	−40125°C	± 0,25°	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI SENSOR BUS NAKED T 1	PFAT4TQ-01	9801	-1085°C	± 1°	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI SENSOR BUS NAKED T 0,2	PFAT4AQ-00	9808	−40125°C	± 0,25°	1, 2, 3, 4	1	2	3	4	1	2	3	4
MILLI SENSOR BUS RJ BLACK BOX T H 0,2	PFATREQ-00B	SHT35	0 100 %RH, -40125°C	± 0,1°C e ± 1,5%	1, 2	1	2	1	2	1	2	1	2
MILLI SENSOR BUS RJ BLACK BOX DP	PFAMRDZ-00EB	SDP810-500PA	-500 Pa+500 Pa	± 3%	FIXED	1	1	1	1	1	1	1	1
MILLI SENSOR BUS RJ BLACK BOX PM	PFAMVPZ-00EB	SPS30	01.000μg/m³	± 10%	FIXED	1	1	1	1	1	1	1	1
MILLI SENSOR BUS RJ BLACK BOX OZONE	PFAMVWZ-00EB	DGS-O3 968-042	0 to 5 ppm	± 15%	FIXED								
MILLI PRO SENSOR BUS RJ BLACK BOX VOC	PFATMRVZ-00EB	SGPC3	0 1000 ppm	± 15%	1, 2, 3, 4	1	2	3	4	1	2	3	4
Monossido di Carbonio (CO)	PFAMVYZ-00EB	DGS-CO 968-034	0 1000 ppm	± 15%	FIXED								

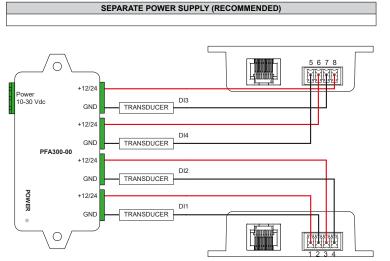
MILLI RJ BOX 3,3VDC 4DI 4COMMON

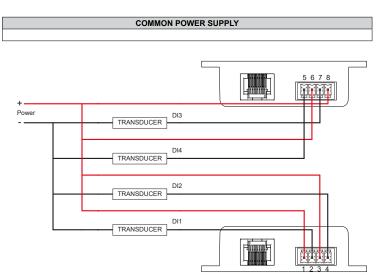
TIPO	CODICE	INDIRIZZO	DESCRIZIONE
MILLI PRO I/O RJ BOX 4DI	PFAMR0Z-N0EB	1, 2, 3, 4	4 ingressi digitali con comuni separati


ADDRESSING


ADDRESS						
*1 2 3 4						
	•	1	•			
	100	•	•			
* default address						
	* 1	*1 2	*1 2 3			

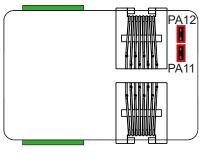
DIGITAL INPUTS


The digital inputs are optoisolated and complete with programmable anti-bounce filter. They are normally used to count externally generated pulses, such as gas meters (a galvanic separator is required according to ATEX regulations), water, piece counters, etc. Appropriately programmed they can also function as remote status indicators (e.g. ON/ OFF of machines, switches, etc.). Maximum sampling frequency 500Hz (2ms). An external 10-30Vdc power supply is required.



INPUTS				
Power supply voltage (external)	from 10 to 30 Vdc			
Current consumption	from 2 to 10 mA			
Maximum counting frequency 500Hz				
Note: for gas meters a galvanic separator is required according to ATEX regulations				

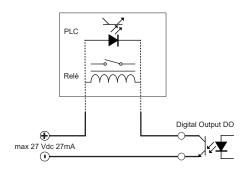
	PINOUT COLLEGAMENTO SIO CON RJ45								
FUNZIONE	COLORE								
SCL	Bianco Arancio								
VCC	Arancio								
GND	Bianco Verde								
SDA	Verde								

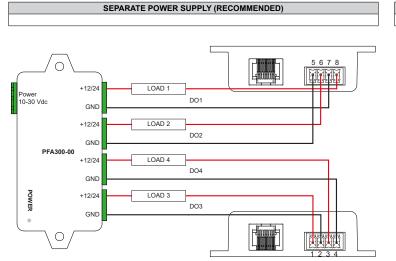


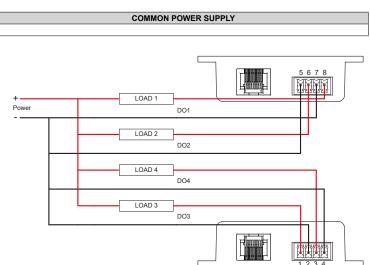
MILLI RJ BOX 3,3VDC 4DO 4COMMON

TIPO	CODICE	INDIRIZZO	DESCRIZIONE
MILLI PRO I/O RJ BOX 4DO	PFAMR0Z-P0EB	1, 2, 3, 4	4 uscite digitali con comuni separati

ADDRESSING

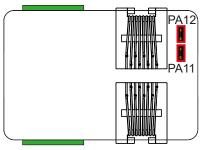

JUMPER	ADDRESS				
	*1 2 3 4				
PA12		•		•	
PA11			•	•	
* default address					


PINOUT COLLEGAMENTO SIO CON RJ45					
FUNZIONE	COLORE				
SCL	Bianco Arancio	_\			
VCC	Arancio				
GND	Bianco Verde				
SDA	Verde				


DIGITAL OUTPUTS

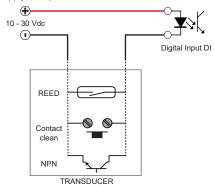
The digital outputs are opto-isolated transistors, rated as 27 Vdc 27 mA according to DIN 43864. They are programmable as alarm or Energy Automation outputs or as remotely controlled output units.

OUTPUTS			
Maximum applicable voltage	27 Vdc		
Maximum switchable current	27mA		
Note: Optoisolated transistor digit	al outputs (NPN) a	according to DIN 43864 standard.	•



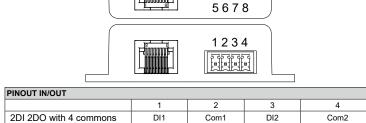
MILLI RJ BOX 3,3VDC 2DI 2DO 4COMMON

TIPO	CODICE	INDIRIZZO	DESCRIZIONE
MILLI PRO I/O RJ BOX 2DI 2DO	PFAMR0Z-Q0EB	1, 2, 3, 4	2 ingressi e 2 uscite digitali con comuni separati


ADDRESSING

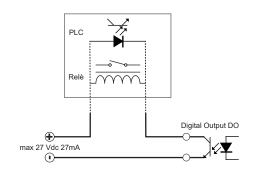
JUMPER	ADDRESS				
	*1 2 3 4				
PA12		•		•	
PA11			•	•	
* default address					

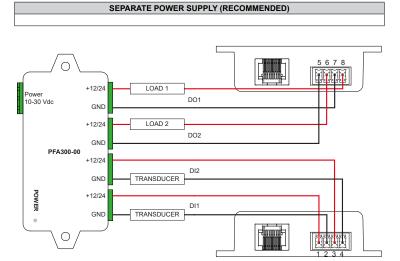
DIGITAL INPUTS

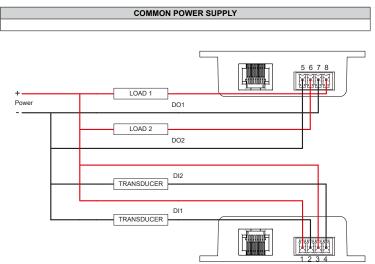

The digital inputs are optoisolated and complete with programmable anti-bounce filter. They are normally used to count externally generated pulses, such as gas meters (a galvanic separator is required according to ATEX regulations), water, piece counters, etc. Appropriately programmed they can also function as remote status indicators (e.g. ON/OFF of machines, switches, etc.). Maximum sampling frequency 500Hz (2ms). An external 10-30Vdc power supply is required.

INPUTS				
Power supply voltage (external)	from 10 to 30 Vdc			
Current consumption	from 2 to 10 mA			
Maximum counting frequency	500Hz			
Note: for gas meters a galvanic separator is required according to ATEX regulations				

PINOUT IN/OUT				
	5	6	7	8
2DI 2DO with 4 commons	Com2	DO2	Com1	DO1

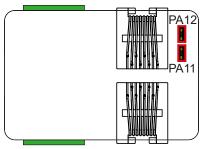

MAN


PINOUT COLLEGAMENTO SIO CON RJ45					
FUNZIONE	COLORE				
SCL	Bianco Arancio	_\			
VCC	Arancio				
GND	Bianco Verde				
SDA	Verde				

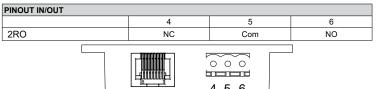

DIGITAL OUTPUTS

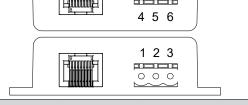
The digital outputs are opto-isolated transistors, rated as 27 Vdc 27 mA according to DIN 43864. They are programmable as alarm or Energy Automation outputs or as remotely controlled output units.

OUTPUTS			
Maximum applicable voltage	27 Vdc		
Maximum switchable current	27mA		
Note: Ontoisolated transistor digi	tal outputs (NPN) a	according to DIN 43864 standard	



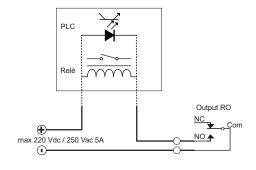
MILLI RJ BOX 3,3VDC 2DO RELE' PASSO


TIPO	CODICE	INDIRIZZO	DESCRIZIONE
MILLI PRO I/O RJ BOX 2DO RELE' PASSO	PFAMR0Z-70EB	1, 2, 3, 4	2 uscite a relè max 30V 2A (carico resistivo)



ADDRESSING

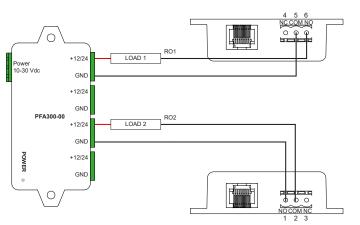
JUMPER	ADDRESS				
	*1 2 3 4				
PA12		•		•	
PA11			•	•	
* default address					



			-
PINOUT IN/OUT			
	1	2	3
2RO	NO	Com	NC

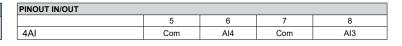
PINOUT COLLEGAMENTO SIO CON RJ45						
FUNZIONE	COLORE					
SCL	Bianco Arancio	_\				
VCC	Arancio					
GND	Bianco Verde					
SDA	Verde					

RELE' OUTPUTS


The relay outputs are programmable as alarm outputs, Energy Automation or as remotely controlled output units.

Contact Data				
Max. switching voltage	220VDC, 250VAC			
Max. switching current	5A			
Rated current	2A			
Limiting continuous current, 85°C	2A			
Switching Power	60W, 62.5VA			
Contact ratings, UL	110VDC / 0.3A - 33W 30VDC / 2.0A - 60W 120VAC / 0.5A - 60VA			
	240VAC / 0.25A -60VA			
Initial contact resistance	<50mΩ at 10mA, 20mV			
Frequency of operation, without load	50 operations/s			

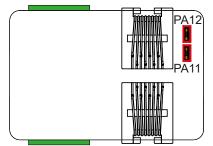
COMMON POWER SUPPLY


SEPARATE POWER SUPPLY (RECOMMENDED)

+ DOME HOLD RO2 LOAD 1 RO2 LOAD 2 RO2 1 2 3

MILLI RJ BOX 3,3VDC 4AI

TIPO	CODICE	INDIRIZZO	DESCRIZIONE
MILLI PRO I/O RJ BOX 4AI	PFAMR0Z-R0EB	11234	4 ingressi analogici -10÷10V (compatibile 0÷10V, 0÷5V, -5÷5V, 4÷20mA)



5678

		1234		
PINOUT IN/OUT				
	1	2	3	4
4AI	Al1	Com	Al2	Com

ADDRESSING							PINOUT COLLEGAMENTO SIO CON RJ45		
					FUNZIONE	COLORE			
PA12	JUMPER		ADD	RESS			SCL	Bianco Arancio	\
		* 1	2	3	4		1/00		
	PA12		•	8	•		VCC	Arancio	
PA11							GND	Bianco Verde	
PA11				•	•				
	PA11		•	•		SDA	Verde	<i></i>	
* default address									

JUMPER	ADDRESS							
	* 1	2	3	4				
PA12		•		•				
PA11			•	•				
* default	address							
,								

ANALOGUE INPUTS

The 4AI version is equipped with four analog inputs -10+10V (compatible 0+10V, 0+5V, -5+5V, 4+20mA with 200 ohm resistance).

VOLTAGE	SOURCE	CURRENT SOURCE		
+/- O O Com	Al	R -/-	Al	
	-10÷10V		0÷20mA	
Voltage range	0÷10V	Current range		
Voltage range	0÷5V	Current range		
	-5÷5V			

Analogue inputs	
Analogue innute	-10÷10V, 0÷10V, 0÷5V, -5÷5V
Analogue inputs	4÷20mA with 200 ohm resistor

	CALCOLO PARAMETRI						
		R	valore in ohm della resistenza applicata (da 200 a 500 ohm)				
Vmin	-10	lmin	0 o 4 mA				
Vmax	+10	lmax	20mA				
Is	valore inizio scala, associato a Vmin	Is	valore inizio scala, associato a Imin				
Fs	valore fondo scala, associato a Vmax	Fs	valore fondo scala, associato a Imax				
Cs	valore tra Is e Fs	Cs	valore tra Is e Fs				
Gain	$\frac{Fs - Is}{Vmax - Vmin}$	Gain	$\frac{Fs - Is}{\left(\frac{lmax}{1000} * R\right) - \left(\frac{lmin}{1000} * R\right)}$				
Offset	$\frac{Is - (Gain * Vmin)}{Gain}$	Offset	$\frac{Is - (Gain * \frac{Imin}{1000} * R)}{Gain}$				
CutOff	$\frac{12 + \frac{(Cs - Offset * Gain)}{Gain}}{24} * 1000$	CutOff	$\frac{12 + \frac{(Cs - Offset * Gain)}{Gain}}{24} * 1000$				

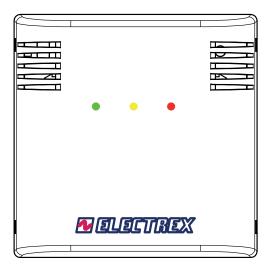
MILLI PRO SENSOR BUS RJ BLACK BOX

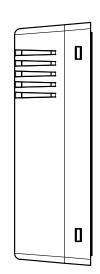
TIPO	CODICE	INDIRIZZO	RANGE	ACCURATEZZA
SENSOR BUS RJ BLACK BOX TH	PFATRHQ-00B	FISSO	0 100 %RH, -40125°C	± 0,2°C e ± 1,8%
MILLI PRO SENSOR BUS RJ BLACK BOX T H	PFAMRHZ-00EB	1, 2, 3, 4	0 100 %RH, -40125°C	± 0,1°C ± 1,0%
MILLI PRO SENSOR BUS RJ BLACK BOX T H L P	PFAMRSZ-00EB	1, 2, 3, 4	0 100 %RH, -40125°C 0 lux to 64,000 lux 20 kPa to 110 kPa	± 0,1°C e ± 1,5% lux: ±10% P: Tipica ±1 Pa
SENSOR BUS BLACK BOX T 0,2	PFATBAQ-00B	1, 2, 3, 4	-40125°C	± 0,25°
MILLI SENSOR BUS RJ BLACK BOX T H 0,2	PFATREQ-00B	1, 2	0 100 %RH, -40125°C	± 0,1°C e ± 1,5%
MILLI PRO SENSOR BUS RJ BLACK BOX VOC	PFATMRVZ-00EB	1, 2, 3, 4	0 1000 ppm	± 15%

Temperature and Relative Humidity (TH) sensors with typical accuracy of $\pm 0.2^{\circ}$ C and $\pm 1.5\%$ with different housings. Addressable from 1 to 2.

 $\label{lem:Luminosity (L) sensors configurable for indoor (0-4,000Lux) or outdoor (0-65,000Lux).} \\ Not addressable.$

Atmospheric Pressure (B) sensors from 800 mbar to 1,100 mbar. Not addressable.

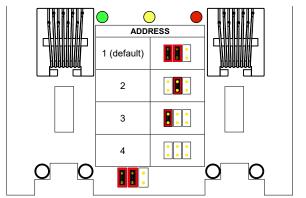

INDIRIZZAMENTO



INDIRIZZAMENTO					
JUMPER	INDIRIZZO				
	1				
	2				
	3				
• • • • • • • • • • • • • • • • • • •	4				

MILLI PRO SENSOR BUS RJ WHITE BOX T H CO2 P

ı	TIPO	CODICE	INDIRIZZO	RANGE	ACCURATEZZA
	MILLI PRO SENSOR BUS RJ WHITE BOX T H CO2 P	PFAMDZZ-00EB	1, 2, 3, 4	0 40000 ppm 0 100 %RH, -40125°C 20 kPa to 110 kPa	±40 ppm + 5% ± 0,1°C e ± 1,5% P: Tipica ±1 Pa


The Sensor Bus RJ CO2 Traffic Light sensor is a device that allows you to measure the values of carbon dioxide (CO2 Carbon dioxide) and to signal, through status LEDs, the level of CO2 inside the environments. The device allows for the insertion of three signaling LEDs (green, orange, red).

Characteristics of Traffic light CO2 sensor			
Degree of protection	IP30		
Mounting	Wall mounting		
Container	white in self-extinguishing ABS UL 94 V0		
Dimensions (w x h x d)	80 x 80 x 25 mm		
Measuring range	0 ppm – 40000 ppm		
Accuracy	±(40 ppm + 5%)		
Power supply	3.3V from SIO bus (not battery-powered)		

Standards		
Safety	IEC EN 61010-1	
E.M.C.	EN 301489-1 e -3	

Le soglie	Le soglie degli allarmi di CO2 saranno impostate in fabbrica come di seguito:			
LED CO2 value		CO2 value		
	Green	between 400 and 1000ppm		
•	Yellow	between 1001ppm and 1600ppm		
Red higher than 1600 ppm				

ADDRESSING

SENSOR BUS BLACK BOX T 0,2

TIPO	CODICE	INDIRIZZO	RANGE	ACCURATEZZA
SENSOR BUS RJ BLACK BOX TH	PFATRHQ-00B	FISSO	0 100 %RH, -40125°C	± 0,2°C e ± 1,8%
MILLI PRO SENSOR BUS RJ BLACK BOX T H	PFAMRHZ-00EB	1, 2, 3, 4	0 100 %RH, -40125°C	± 0,1°C ± 1,0%
MILLI PRO SENSOR BUS RJ BLACK BOX T H L P	PFAMRSZ-00EB	1, 2, 3, 4	0 100 %RH, -40125°C 0 lux to 64,000 lux 20 kPa to 110 kPa	± 0,1°C e ± 1,5% lux: ±10% P: Tipica ±1 Pa
SENSOR BUS BLACK BOX T 0,2	PFATBAQ-00B	1, 2, 3, 4	−40…125°C	± 0,25°
MILLI SENSOR BUS RJ BLACK BOX T H 0,2	PFATREQ-00B	1, 2	0 100 %RH, -40125°C	± 0,1°C e ± 1,5%
MILLI PRO SENSOR BUS RJ BLACK BOX VOC	PFATMRVZ-00EB	1, 2, 3, 4	0 1000 ppm	± 15%

Temperature Sensors (T) with typical accuracy of $\pm 0.5^{\circ}C$ or $\pm 0.2^{\circ}C$ with different housings. Addressable from 1 to 4.

WIRE PINOUT				
PIN	FUNCTION			
1	SCL			
2	VCC			
3	GND			
4	ADDRESS 1			
5	ADDRESS I			
6	SDA			
7	ADDRESS 2			
8	ADDRESS 2			
	1 2 3 4 5 6			

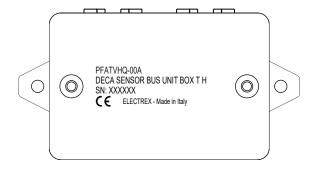
ADDRESSING					
	-	IR .			
ADDRESS					
1	CLOSED	CLOSED			
2	OPEN	CLOSED			
3	CLOSED	OPEN			
4	OPEN	OPEN			

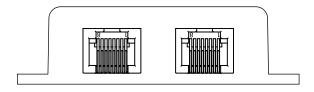
MILLI SENSOR BUS NAKED

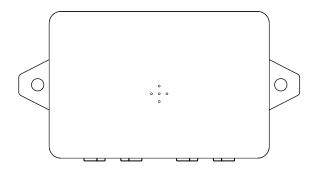
TIPO	CODICE	INDIRIZZO	RANGE	ACCURATEZZA
MILLI SENSOR BUS NAKED T 1	PFAT4TQ-01	1, 2, 3, 4	−10…85°C	± 1°
MILLI SENSOR BUS NAKED T 0,2	PFAT4AQ-00	1, 2, 3, 4	−40125°C	± 0,25°

Temperature Sensors (T) with typical accuracy of $\pm 0.5^{\circ}$ C or $\pm 0.2^{\circ}$ C with different housings. Addressable from 1 to 4.

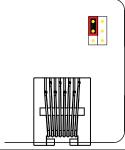
WIRE PINOUT				
COLOR	PIN	FUNCTION		
White Orange	1	SCL		
Orange	2	VCC		
White Green	3	GND		
Blue	4	ADDRESS 1		
White Blue	5	ADDRESS I		
Green	6	SDA		
White Brown	7	ADDRESS 2		
Brown	8	ADDRESS 2		

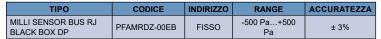

ADDRESSING				
	PA	IR .		
ADDRESS				
1	CLOSED	CLOSED		
2	OPEN	CLOSED		
3	CLOSED	OPEN		
4	OPEN	OPEN		


MILLI SENSOR BUS RJ BLACK BOX T H 0,2



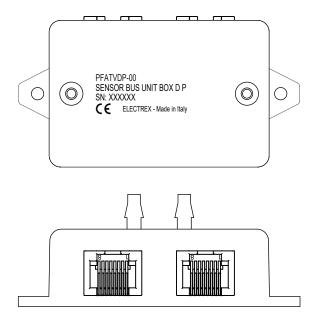
TIPO	CODICE	INDIRIZZO	KANGE	ACCURATEZZA
SENSOR BUS RJ BLACK BOX TH	PFATRHQ-00B	FISSO	0 100 %RH, -40125°C	± 0,2°C e ± 1,8%
MILLI PRO SENSOR BUS RJ BLACK BOX T H	PFAMRHZ-00EB	1, 2, 3, 4	0 100 %RH, -40125°C	± 0,1°C ± 1,0%
MILLI PRO SENSOR BUS RJ BLACK BOX T H L P	PFAMRSZ-00EB	1, 2, 3, 4	0 100 %RH, -40125°C 0 lux to 64,000 lux 20 kPa to 110 kPa	± 0,1°C e ± 1,5% lux: ±10% P: Tipica ±1 Pa
SENSOR BUS BLACK BOX T 0,2	PFATBAQ-00B	1, 2, 3, 4	-40125°C	± 0,25°
MILLI SENSOR BUS RJ BLACK BOX T H 0,2	PFATREQ-00B	1, 2	0 100 %RH, -40125°C	± 0,1°C e ± 1,5%
MILLI PRO SENSOR BUS RJ BLACK BOX VOC	PFATMRVZ-00EB	1, 2, 3, 4	0 1000 ppm	± 15%

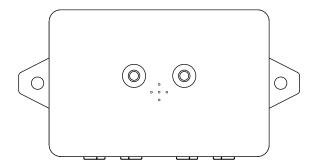

Parameters	Range	Accuracy
Temperature [T]	-20°C+80°C	± 0,2°C
Relative Humidity [RH]	0100%	± 1,5% RH



ADDRESSING

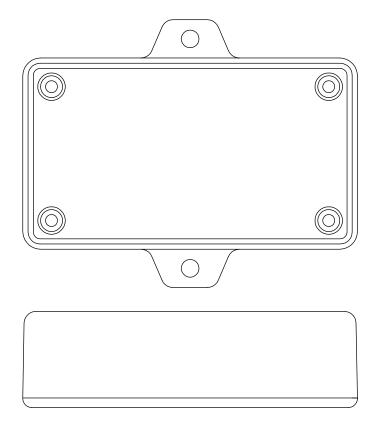
ADDRESSING	
JUMPER	ADDRESS
	1 (default)
	2


MILLI SENSOR BUS RJ BLACK BOX DP



 $\label{eq:continuous} \textbf{Differential Pressure (DP) sensors} \ \text{from -500 Pa to +500 Pa and Temperature from -20°C} \\ to \ +80°C \ \text{with typical accuracy } \ \pm 1°C. \ \text{Non-addressable}.$

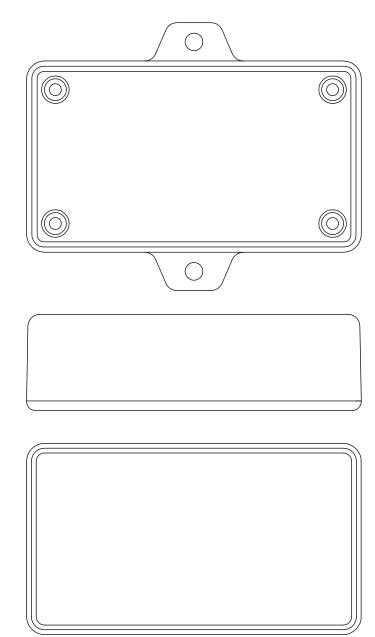
Parameters	Range	Accuracy
differential pressure in air [DP]	-500 Pa+500 Pa	± 3%

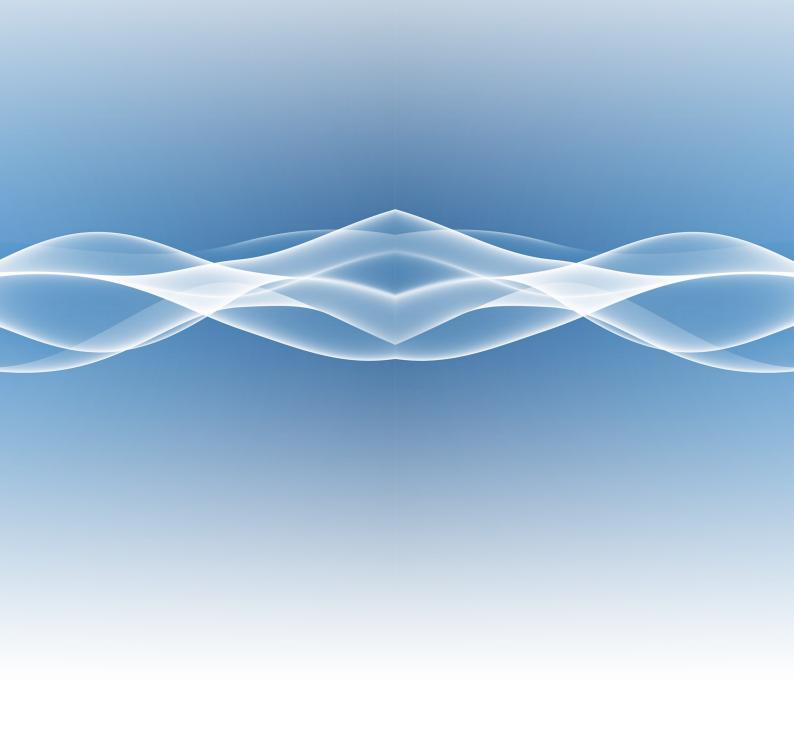


MILLI SENSOR BUS RJ BLACK BOX PM

TIPO	CODICE	INDIRIZZO	RANGE	ACCURATEZZA
MILLI SENSOR BUS RJ BLACK BOX PM	PFAMVPZ-00EB	FISSO	01.000µg/m³	± 10%

PM (Particulate Matter) fine dust or particulate matter sensor. Particulate size: PM1.0, PM2.5, PM4, PM10. Measuring range 0...1,000 microg/m3. Non-addressable.


Parameters	Range	Accuracy	
PM1			
PM2,5 PM10	01.000μg/m³	± 10% between 0-40°C	



MILLI SENSOR BUS RJ BLACK BOX OZONE

TIPO	CODICE	INDIRIZZO	RANGE	ACCURATEZZA
MILLI SENSOR BUS RJ BLACK BOX OZONE	PFAMVWZ-00EB	FISSO	0 to 5 ppm	± 15%

