ATTO D4 DC
 installation instructions

COPYRIGHT

Electrex is a trademark of Akse S.r.I. All rights reserved.
It is forbidden to duplicate, adapt, transcript this document without Akse written authorization, except when regulated accordingly by the Copyright Laws.

WARRANTY

This product is covered by a warranty against material and manufacturing defects for a period of 24 months period from the manufacturing date.
The warranty does not cover the defects that are due to:

- Negligent and improper use
- Failures caused by atmospheric hazards
- Acts of vandalism
- Wear out of materials
- Firmware upgrades

Akse reserves the right, at its discretion, to repair or substitute the faulty products
The warranty is not applicable to the products that will result defective in consequence of a negligent and improper use or an operating procedure not contemplated in this manual.

RETURN AND REPAIR FORMALITIES

Akse accepts the return of instruments for repair only when authorized in advance. The transport costs are at customer charge.

RE-SHIPPING OF REPAIRED PRODUCT

The terms for re-shipment of repaired products are ex-works, i.e. the transport costs are at customer charge.
Products returned as detective but found to be perfectly working by our laboratories, will be charged a flat fee to account for checking and testing time irrespective of the warranty terms.

SAFETY

This instrument was manufactured and tested in compliance with IEC 61010 CAT III-300V, class 2 standards for operating voltages up to 300 VAC rms phase to neutral.
In order to maintain this condition and to ensure safe operation, the user must comply with the indications and markings contained in the following instructions:

- When the instrument is received, before starting its installation, check that it is intact and no damage occurred during transport.
- Before mounting, ensure that the instrument operating voltages and the mains voltage are compatible then proceed with the installation.
- The instrument power supply needs no earth connection.
- The instrument is not equipped with a power supply fuse; a suitable external protection fuse must be foreseen by the contractor.
- Maintenance and/or repair must be carried out only by qualified, authorized personnel
- If there is ever the suspicion that safe operation is no longer possible, the instrument must be taken out of service and precautions taken againstits accidental use.
- Operation is no longer safe when:

1) There is clearly visible damage.
2) The instrument no longer functions.
3) After lengthy storage in unfavorable conditions.
4) After serious damage occurred during transport

The instruments must be installed in respect of all the local regulations.

OPERATOR SAFETY

Warning: Failure to observe the following instructions may lead to a serious danger of death.

- During normal operation dangerous voltages can occur on instrument terminals and on voltage and current transformers. Energized voltage and current transformers may generate lethal voltages. Follow carefully the standard safety precautions while carrying out any installation or service operation.
- The terminals of the instrument must not be accessible by the user after the installation. The user should only be allowed to access the instrument front panel where the display is located.
- Do not use the digital outputs for protection functions nor for power limitation functions. The instrument is suitable only for secondary protection functions.
- The instrument must be protected by a breaking device capable of interrupting both the power supply and the measurement terminals. It must be easily reachable by the operator and well identified as instrument cut-off device.
- The instrument and its connections must be carefully protected against short-circuit.

Precautions: Failure to respect the following instructions may irreversibly damage to the instrument.

- The instrument is equipped with PTC current limiting device but a suitable external protection fuse should be foreseen by the contractor.
- The outputs and the options operate at low voltage level; they cannot be powered by any unspecified external voltage.
- The application of currents not compatible with the current inputs levels will damage to the instrument.

Further documentation may be downloaded from our web site www.electrex.it.
This document is owned by company AKSE that reserves all rights.

DECLARATION OF CONFORMITY

Akse hereby declares that its range of products complies with the following directives EMC 89/336/EEC 73/23CE 93/68 CE and complies with the following product's standard CEI EN 61326 - IEC 61326 CEI EN 61010 - IEC 1010.
The product has been tested in the typical wiring configuration and with peripherals conforming to the EMC directive and the LV directive.

The instrument is programmed with the following default values:

PAGE	MENU DISPLAYED	AVAILABLE PARAMETERS	DEFAULT
PASSWORD REQUESTED		0000 .. 9999	0000
RS485			
	RS 485 ADDRESS	1... 247	27
	Comm. Speed	2400, 4800, 9600, 19200, 38400	38400
	Data Bit	708	8
	Parity	$\mathrm{N}=$ no parity, $\mathrm{E}=$ peer parity, $\mathrm{O}=$ odd parity	N
	Bit of stop	102	2
NETWORK			
	Export	NO, YES	NO
	IFS	1... 10000	00010
	SHUNT	60 o 100	60
	VR	400000/999	1/1
AVG-MD TIME (note n.2)			
	POWERS	1... 60 (minutes)	15
	CURRENTS	1... 60 (minutes)	8
ALARM 1 / A (note n.11)			
	MODE (note n.3)	Normal, DERIV	NORMAL
	TYPE (note n.4)	MAX, MIN	MIN
	MEAS (note n.5)	Controlled measure. See table n. 1 for register selection.	200
	THRE (note n.5)	Valore soglia	0
ALARM 1 / B			
	HYST	1... 100 (\%)	1
	DELAY	1...99 (seconds)	1
	AVG (note n.6)	1...99 (seconds)	1
	OUT (note n.7)	Normal, Hold, Pulse-L, Pulse-S	NORMAL
ALARM 2 / A (note n.11)			
	MODE (note n.3)	Normal, DERIV	NORMAL
	TYPE (note n.4)	MAX, MIN	MIN
	MEAS (note n.5)	Controlled measure. See table n. 1 for register selection.	200
	THRE (note n.5)	Valore soglia	0
ALARM 2 / B			
	HYST	1... 100 (\%)	1
	DELAY	1...99 (seconds)	1
	AVG (note n.6)	1...99 (seconds)	1
	OUT (note n.7)	Normal, Hold, Pulse-L, Pulse-S	NORMAL
ALARM 3 / A (note n.11)			
	MODE (note n.3)	Normal, DERIV	NORMAL
	TYPE (note $n .4$)	MAX, MIN	MIN
	MEAS (note n.5)	Controlled measure. See table n. 1 for register selection.	200
	THRE (note n.5)	Valore soglia	0
ALARM 3 / B			
	HYST	1... 100 (\%)	1
	DELAY	1...99 (seconds)	1
	AVG (note n.6)	1...99 (seconds)	1
	OUT (note n.7)	Normal, Hold, Pulse-L, Pulse-S	NORMAL
ALARM 4 / A (note n.11)			
	MODE (note n.3)	Normal, DERIV	NORMAL
	TYPE (note n.4)	MAX, MIN	MIN
	MEAS (note n.5)	Controlled measure. See table n. 1 for register selection.	200
	THRE (note n.5)	Valore soglia	0
ALARM 4 / B			
	HYST	1... 100 (\%)	1
	DELAY	1...99 (seconds)	1
	AVG (note n.6)	1...99 (seconds)	1
	OUT (note n.7)	Normal, Hold, Pulse-L, Pulse-S	NORMAL
DIGITAL OUT 1 (note n.8)			
	MODE	PULSE, ALARM, REMOTE	PULSE
	POLARITY	NO, NC	NO
PULSE OUT 1			
	MEAS (note n.9)	P-IMP, P-EXP	P-IMP
	PRIMARY (note n.10)	YES, NO	YES
	WEIGHT	1...100000000 (Wh/100)	100000
	WIDTH	50ms...1S	500
DIGITAL OUT 2 (note n.8)			
	MODE	PULSE, ALARM, REMOTE	PULSE
	POLARITY	NO, NC	NO
PULSE OUT 2			
	MEAS (note n.9)	P-IMP, P-EXP	P-EXP
	PRIMARY (note n.10)	YES, NO	YES
	WEIGHT	1...100000000 (Wh/100)	100000
	WIDTH	50ms...1S	500

MECHANICAL CHARACTERISTICS	
Enclosure	Self-extinguishing plastic material class V0
Protection degree	IP40 on front panel
Dimensions	$70 \times 90 \times 58 \mathrm{~mm}$ (4 DIN modules)
VOLTAGE INPUT	Fino a 300 V
Direct	max 360 V
	$18-60 \mathrm{VDC}$
Power supply	<3 3VA
Self consumption	ATTO D4 DC RS485 18 $\div 60 \mathrm{VDC} \mathrm{TRANSDUCER} \mathrm{/}$ ANALYZER
MODELS	ATTO D4 DC RS485 18 TRFA7471-08 TRANSDUCER / ANALYZER 1DI 2DO
PFA7471-18	

Holding Registers			
			$\stackrel{\text { \% }}{\frac{0}{5}}$
100	21	Primary VT	from 1 to 400000 V
102	11	Secondary VT	from 1 to 999 V
103	11	Primary CT (Not used if version 70A)	from 1 to 10000 A
104	11	Secondary CT (Current full scale if version 70A)	1 or 5 A (14 or 70 if version 70A with external CT. In this version, registers 103 and 104 point to the same parameter.)
105	1 B	Insertion mode	Bit 7 = Enables Export Bit 0-3 = Insertion modality: $\begin{aligned} & 0 \times 00 / / 0=1 \mathrm{P}, \quad 0 \times 01 / / 1=2 \mathrm{P} \\ & 0 \times 02 / / 2=3 \mathrm{P} _4 \mathrm{~W}, \quad 0 \times 03 / / 3=3 \mathrm{P} _3 \mathrm{~W} _2 \mathrm{CT} \end{aligned}$
106	11	Integration Time for Power	from 1 to 60 min
107	11	Integration Time for Current	from 1 to 60 min
109	1 B	Life Timer 2 (partial)	Bit 0-1 = Command input selection (0-4, 0=disables external command) Bit $4=$ Command from alarm channel ($0=$ command from digital input, 1=command from alarm) Bit $7=$ inverts command polarity ($0=$ counts if command is active, $1=$ counts if command is not active)
110	1 B	Energy Counters set 1 (totals)	Bit 0-1 = Command input selection Bit $4=$ Command from alarm channel Bit $7=$ inverts command polarity
111	1 B	Energy Counters set 2 (partials)	Bit 0-1 = Command input selection Bit 4 = Command from alarm channel Bit 7 = inverts command polarity
128	11	Total counters set symbol	2 ASCII characters from 0×30 to 0×39 and from 0×41 to 0×5 A
129	11	Partial counters set symbol	2 ASCII characters from 0×30 to 0×39 and from 0×41 to 0×5 A
135	11	Pulse output 1 measure selection	Bit 0-2 = Power index ($0=$ Pimp, 1=QindImp, 2=QcapImp, 3=Simp, 4=Pexp, 5=QindExp, 6=QcapExp, 7=Sexp Bit $7=$ Value to secondary CT/VT e.g.: 0x00, 0x01, 0x02...=primary; $0 \times 80,0 \times 81,0 \times 82 \ldots$ =secondary
136	11	Pulse length output 1	from 50 to 1000 ms
137	21	Pulse weight output 1	in Wh/100, from 1 to 100000000
139	11	Pulse output 2 measure selection	Bit 0-2 = Power Index Bit $7=$ Secondary
140	11	Pulse length output 2	from 50 to 1000 ms
141	21	Pulse weight output 2	in Wh/100, from 1 to 100000000
155	1 B	Configuration DO1	Bit 0-1 = Mode ($0=$ modbus command, 1=alarm, 2=pulses) Bit $7=$ Normally closed
156	1 B	Configuration DO 1	Bit 0-1 = Mode (0=modbus command, 1=alarm, 2=pulses) Bit $7=$ Normally closed
159	11	Measure selection alarm 1	IR address to which connect the alarm. From 200 to 390
160	11	Alarm 1 Mode	```Bit 0-3 = Alarm Mode \(0=\) Normal \(1=1 / 3\) (takes the measure from the next two addr. from the one programmed) \(2=3 / 3\) (takes the measure from the next two addr. from the one programmed) 3 = Imbalance (takes the measure from the next two addr. from the one programmed) 4 = Variation (delta) compared to the average value in floating window. Bit 4 = Direction (polarity): \(0=\operatorname{Min}\) (negative if derived) \(1=\operatorname{Max}\) (positive if derived) Bit 8-11 = Pilotage mode output \(0=\) Normal 1 = Short pulse (100 mS) - No effect on IR/HR (as mode 0) 2 = Long pulse (500 mS) - No effect on IR/HR (as mode 0) 3 = Hold Bit 12-14 = Output logic selection Bit \(12=\) Output port operator 0 out \(=A\) or \(B\) 1 out \(=A\) and \(B\) Bit \(13=\) Operator port A (\(0=O R, 1=\) AND \()\) Bit \(14=\) Operator port B (\(0=\mathrm{OR}, 1=\mathrm{AND}\))```
161	11	Logic combination alarm 1	Bit 0-3 = Alarm channels input port A Bit 4-7 = Digital inputs - input port A Bit 8-11 = Alarm channels input port B Bit 12-15 = Digital inputs - input port B
162	11	Integration time alarm 1	If Mode=Variation: Amplitude of the integration interval for average calculation (from 1 to 99 sec)
163	11	Alarm 1 hysteresis	0-99 \%
164	11	Alarm 1 delay	0-99 s (bit 0-7=activation delay, bit 8-15=disactivation delay?)
165	2 F	Alarm 1 threshold	In percentage if Mode=Imbalance or Mode=Variation. Is automatically rounded to the number of digits editable keyboard.
167	11	Measure selection alarm 2	
168	11	Mode alarm 2	
169	$1{ }^{1}$	Logic combination alarm 2	
170	11	Integration time alarm 2	
171	11	Alarm 2 hysteresis	
172	11	Alarm 2 delay	
173	2 F	Alarm 2 threshold	
215	11	Serial transmission delay	da 10 a 1000 ms
216	1 B	Serial port: swap flags	Top Byte always equal to Bottom Byte. 0x01 Swap bytes 0x02 Swap word 0x04 Swap dwords 0x08 Swap words in floats 0×10 Swap bytes in floats 0×80 BCD Mode (not yet!)
217	11	Serial port: comm. speed	$0=2400,1=4800,2=9600,3=19200,4=38400$
221	1 B	Output command	Bit $0=$ Output 1, Bit $1=$ Output 2 Bit 2 = Output 3, Bit 3 = Output 4
223	1 B	Combined Alarm Status	Bit $0=$ Channel 1, Bit 1 = Channel 2 Bit $2=$ Channel 3, Bit $3=$ Channel 4
		Instrument Reset	The writting of the word "0xDEAD

230	1	B	Reset counters set 1 (totals)	Bit $0=$ Ea, Bit $1=$ Er ind, Bit $2=$ Er cap, Bit $3=$ Es (imp) Bit $4=$ Ea, Bit $5=$ Er ind, Bit $6=\operatorname{Ercap}$, Bit $7=$ Es (exp)
231	1	B	Reset counters set 2 (partials)	Bit $0=$ Ea, Bit $1=$ Er ind, Bit $2=$ Er cap, Bit $3=$ Es (imp) Bit $4=$ Ea, Bit $5=\mathrm{Er}$ ind, Bit $6=\mathrm{Ercap}$, Bit $7=\mathrm{Es}(\exp)$
232	1	B	Reset counters phase 1	Bit $0=$ Ea, Bit $1=$ Er ind, Bit $2=$ Er cap, Bit $3=$ Es (imp) Bit $4=$ Ea, Bit $5=\mathrm{Er}$ ind, Bit $6=\mathrm{Ercap}$, Bit $7=\mathrm{Es}(\exp)$
233	1	B	Reset counters phase 2	Bit $0=$ Ea, Bit $1=$ Er ind, Bit $2=$ Er cap, Bit $3=$ Es (imp) Bit $4=$ Ea, Bit $5=\mathrm{Er}$ ind, Bit $6=\mathrm{Ercap}$, Bit $7=\mathrm{Es}(\exp)$
234	1	B	Reset counters phase 3	Bit $0=$ Ea, Bit $1=$ Er ind, Bit $2=$ Er cap, Bit $3=$ Es (imp) Bit $4=$ Ea, Bit $5=\mathrm{Er}$ ind, Bit $6=\mathrm{Ercap}$, Bit $7=\mathrm{Es}(\exp)$
235	1	B	Reset AVG powers	Bit $0=P$, Bit $1=Q$ ind, Bit $2=Q$ cap, Bit $3=S$ (imp) Bit $4=P$, Bit $5=Q$ ind, Bit $6=Q$ cap, Bit $7=S(\exp)$
236	1	B	Reset MD powers	Bit $0=P$, Bit $1=Q$ ind, Bit $2=Q$ cap, Bit $3=S$ (imp) Bit $4=P$, Bit $5=Q$ ind, Bit $6=Q$ cap, Bit $7=S(\exp)$
237	1	B	Reset AVG currents	Bit $0=11$, Bit $1=12$, Bit $2=13$
238	1	B	Reset MD currents	Bit $0=11$, Bit $1=12$, Bit $2=13$
239	1	B	Reset min/max Us	Bit $0=\max$ U1, Bit $1=\operatorname{max~U2,~Bit~} 2=\operatorname{max~U3,~Bit~} 3=x$ Bit $4=\min \mathrm{U} 1$, Bit $5=\min \mathrm{U} 2$, Bit $6=\min \mathrm{U} 3$
240	1	B	Reset min/max Ud	$\begin{aligned} & \text { Bit } 0=\max \text { U1, Bit } 1=\max \text { U2, Bit } 2=\max \text { U3, Bit } 3=x \\ & \text { Bit } 4=\min \text { U1, Bit } 5=\min \text { U2, Bit } 6=\min \text { U3 } \end{aligned}$
241	1	B	Reset min/max 1	Bit $0=\max 11$, Bit $1=\max 12$, Bit $2=\operatorname{max~I3,~Bit~} 3=\max \ln$
242	1	B	Reset min/max Pimp	Bit $0=\operatorname{maxP1}$, Bit $1=\operatorname{maxP} 2$, Bit $2=\operatorname{maxP} 3$
243	1	B	Reset min/max Pexp	Bit $0=\operatorname{maxP1}$, Bit $1=\operatorname{maxP}$ P2, Bit $2=\operatorname{maxP}$ P

F	Float IEEE754
l	Integer
B	Bitmapped

INPUT REGISTERS					
		$\stackrel{c}{*} \begin{aligned} & 0 \\ & 2 \\ & \end{aligned}$	$\begin{aligned} & \text { 들 } \\ & \text { \# } \\ & \text { U } \\ & 0.0 \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \text { 믗 } \\ & \text { 心 } \end{aligned}$	\%
220	2	F	Phase to Neutral Voltage, RMS Amplitude	U1N	[V]
232	2	F	Phase Current, RMS Amplitude	11	[A]
240	2	F	Phase Active Power (+/-)	P1	[W]
284	2	F	Internal Temperature, ${ }^{\circ} \mathrm{C}$	T	$\left[{ }^{\circ} \mathrm{C}\right]$
286	2	F	Internal Temperature, ${ }^{\circ} \mathrm{F}$	T	[${ }^{\circ} \mathrm{F}$]
288	2	F	Phase to Neutral Voltage, RMS Amplitude, MIN	U1N MIN	[A]
294	2	F	Phase to Neutral Voltage, RMS Amplitude, MAX	U1N MAX	[A]
312	2	F	Phase Current, RMS Amplitude, MAX	11 MAX	[A]
320	2	F	Phase Active Power, Import, MAX	P1+ MAX	[A]
326	2	F	Phase Active Power, Export, MAX	P1- MAX	[A]
332	2	F	Phase Current, RMS Amplitude, AVG	11 AVG	[A]
338	2	F	Phase Current, RMS Amplitude, MD	11 MD	[A]
344	2	F	Total imported active power, AVG	P+AVG	[W]
352	2	F	Total exported active power, AVG	P-AVG	[W]
360	2	F	Total imported active power, MD	P+MD	[W]
368	2	F	Total exported active power, MD	P-MD	[W]
376	2	F	External Pulse Counter, With Weight, Total counter or Tariff T1	CNT1 S	
384	2	F	External Pulse Counter, With Weight, Partial Counter or Tariff T2	CNT1 P	
392	2	I	External Pulse Counter, Total counter or Tariff T1	CNT1 S	[-]
400	2	I	Lifetimer, Total counter	TIME S	[s]
402	2	1	External Pulse Counter, Partial Counter or Tariff T2	CNT1 P	[-]
410	2	1	Lifetimer, Partial Counter or Conditional Counter	TIME P	[s]
428	2	1	Total imported active energy, Partial Counter or Tariff T2	Ea P +	[kWh/10]
436	2	1	Total exported active energy, Partial Counter or Tariff T2	Ea P -	[kWh/10]
492	1	B	Digital Inputs Status	DI	[-]
494	1	B	Alarms Status (simple)	ALS	[-]
495	1	B	Alarms Status (combined)	ALC	[-]
528	4	1	Total imported active energy, Partial Counter or Tariff T2	EaP +	[Wh/10]
544	4	1	Total exported active energy, Partial Counter or Tariff T2	EaP -	[Wh/10]

NOTE n. 2	
POWERS	Integration time of the average value (AVG) and max. value (MD) for power (from 1 to 60 minutes)
CURRENTS	Tempo di integrazione del valore medio (AVG) e di punta (MD) per la corrente (da 1 a 60 minuti)
NOTE n .3	
NORMAL	Classic alarm with reference to a fixed or max / min threshold, with applicable hysteresis and delay. The "AVG" parameter is not used.
DERIV	The "THRE" parameter becomes a percentage value. The instantaneous value applied to the alarm on "MEAS" will be compared with its averaged value obtained depending on the time set on "AVG". When the instantaneous value combined to the alarm differs in "more then" (if set "MAX") or in "less then" (if set "MIN") compared to the average value ("AVG") of the percentage set on "THRE", the alarm triggers. With applicable hysteresis and delay. The "AVG" parameter is used.
NOTE n .4	
MAX	Alarm configuration in "excess" according to the conditions set. Except the "UNBAL" mode.
MIN	Alarm configuration "decreasing" according to the conditions set. Except the "UNBAL" mode.
NOTE n. 5	
MEAS	Indicates on which register (and on which measure) the alarm is reported. See table n. 1 (Input Register).
THRE	Alarm threshold in absolute value, except the "DERIV" value where the value inserted becomes a percentage.
NOTE n .6	
AVG	Parameter to be used in the sole "DERIV" mode. Floating window amplitude (in secods) used for creating a reference value to which compare the instantaneous value.
NOTE n. 7	
NORMAL	The output remains exited during all the alarm, after all it falls.
HOLD	The output remains exited untill the manual reset made through Modbus
PULSE-L	The output generates a 500 ms pulse on the alarm triggering.
PULSE-S	The output generates a 100 ms pulse on the alarm triggering.
NOTE n. 8	
PULSE	Enables output function as impulsive
ALARM	Enables output function as alarm
REMOTE	Enables output function through Modbus Protocol
NO	Normally open
NC	Normally closed
NOTE n .9	
P-IMP	Imported Active Power (Energy)
QL-IMP	Imported Inductive Reactive Power (Energy)
QC-IMP	Imported Capacitive Reactive Power (Energy)
S-IMP	Imported Apparent Power (Energy)
P-EXP	Exported Active Power (Energy)
QL-EXP	Exported Inductive Reactive Power (Energy)
QC-EXP	Exported Capacitive Reactive Power (Energy)
S-EXP	Exported Apparent Power (Energy)
NOTE n .10	
YES	Refered to the primary of the CT
NO	Refered to the secondary of the CT
NOTE n .11	
ALLARME 1	Alarm associated to the physic output DIGITAL OUT 1 (DO1, terminal 8)
ALLARME 2	Alarm associated to the physic output DIGITAL OUT 2 (DO2, terminal 9)
ALLARME 3	MODBUS only alarm
ALLARME 4	MODBUS only alarm

ALARM SETTING EXAMPLES

In order that the output "DIGITAL OUT 1" gets excited and remains such during all the alarm (latching): when the Average Active Power (MEAS 344) exceeds the value of 100 kW, hysteresis 5\% and delay of 5 seconds, set the parameters as in the table below:

ALARM 1 / A	MODE (note n.2)	Normal, DERIV	NORMAL
	TYPE (note n.3)	MAX, MIN	MAX
	MEAS (note n.4)	Controlled measure. See table n.1 for the register selection	344
	THRE (note n.4)	Threshold value	100000
ALARM 1 / B	HYST	$1 \ldots .100$ (\%)	5
	DELAY	$1 \ldots .99$ (seconds)	5
	AVG (note $n .5)$	$1 . .99$ (seconds)	1
	OUT (note $n .6)$	Normal, Hold, Pulse-L, Pulse-S	NORMAL
DIGITAL OUT 1	MODE	PULSE, ALARM, REMOTE	NO
	POLARITY	NO, NC	

In order that the output "DIGITAL OUT 1" gets excited and remains such during all the alarm (latching): when the Average Active Power (MEAS 344) falls below the value of 90 kW, hysteresis 5\% and delay of 5 seconds, set the parameters as in the table below:

ALARM 2 / A	MODE (nota n.2)	Normal, DERIV	NORMAL
	TYPE (nota n.3)	MAX, MIN	MIN
	MEAS (nota n.4)	Controlled measure. See table n.1 for the register selection	344
	THRE (nota $n .4)$	Threshold value	90000
ALARM 2 / B	HYST	$1 \ldots 100$ (\%)	5
	DELAY	$1 \ldots 99$ (seconds)	5
	AVG (nota $n .5)$	$1 \ldots 99$ (seconds)	1
	OUT (nota $n .6)$	Normal, Hold, Pulse-L, Pulse-S	NORMAL
DIGITAL OUT 2	MODE	PULSE, ALARM, REMOTE	NO
	POLARITY	NO, NC	

Use cables with max cross-section of $2,5 \mathrm{~mm}^{2}$ if stranded $4 \mathrm{~mm}^{2}$ if rigid and connect them to the terminals marked VOLTAGE INPUT on the instrument according to the applicable diagrams that follow.
Current connection:
Use SHUNT with adequate primary and 60 o 100 mV as secondary rate. Connect the SHUNT to the terminals marked I1 (S1 e S2) (current input) according to the applicable diagrams that follow.

POWER SUPPLY AND SERIAL LINE CONNECTION
The instrument is fitted with a separate power supply. The power supply terminals are numbered (17) and (18). Use cables with max cross-section of $2,5 \mathrm{~mm}^{2}$ if stranded, 4 mm^{2} if rigid

DIGITAL INPUT \& OUTPUT CONNECTION
only for version PFA7471-18)

$\|l\|$ Digital outputs (optocoupled NPN transistor type for DIN 43864) Maximum applicable voltage: 22 Vdc	
Maximum switchable current:	27 mA

EXAMPLE OF DIGITAL INPUT \& OUTPUT CONNECTION

Digital Inputs	
Supply voltage (external):	from 10 to 30 Vdc
Current consumption:	from 2 to 10 mA
Max. count frequency	10 or 100 Hz
N.B. For gas meters a galvanic separation is needed per ATEX standards	

