EXA D6 4-20mA

INSTALLATION GUIDE

COPYRIGHT

Electrex is a trademark of Akse S.r.l. All rights reserved.
It is forbidden to duplicate, adapt, transcript this document without Akse written authorization, except when regulated accordingly by the Copyright Laws.

WARRANTY

This product is covered by a warranty against material and manufacturing defects for a 24 months period from the manufacturing date.
The warranty does not cover the defects that are due to:

- Negligent and improper use
- Failures caused by atmospheric hazards
- Acts of vandalism
- Wear out of materials
- Firmware upgrades

Akse reserves the right, at its discretion, to repair or substitute the faulty products The warranty is not applicable to the products that will result defective in consequence of a negligent and improper use or an operating procedure not contemplated in this manual.

RETURN AND REPAIR FORMALITIES

Akse accepts the return of instruments for repair only when authorized in advance. The transport costs are at customer charge.

RE-SHIPPING OF REPAIRED PRODUCT

The terms for re-shipment of repaired products are ex-works, i.e. the transport costs are at customer charge.
Products returned as detective but found to be perfectly working by our laboratories, will be charged a flat fee to account for checking and testing time irrespective of the warranty terms.

SAFETY

This instrument was manufactured and tested in compliance with IEC 61010-1 CAT III 300 V class 2 standards for operating voltages up to 300 VAC rms phase to neutral. In order to maintain this condition and to ensure safe operation, the user must comply with the indications and markings contained in the following instructions:

- When the instrument is received, before starting its installation, check that it is intact and no damage occurred during transport.
- Before mounting, ensure that the instrument operating voltages and the mains voltage are compatible then proceed with the installation.
- The instrument power supply needs no earth connection.
- The instrument is not equipped with a power supply fuse; a suitable external protection fuse must be foreseen by the contractor.
- Maintenance and/or repair must be carried out only by qualified, authorized personnel
- If there is ever the suspicion that safe operation is no longer possible, the instrument must be taken out of service and precautions taken against its accidental use.
- Operation is no longer safe when:

1) There is clearly visible damaged.
2) The instrument no longer functions.
3) After lengthy storage in unfavorable conditions.
4) After serious damage occurred during transport

The instruments must be installed in respect of all the local regulations.

OPERATOR SAFETY

Warning: Failure to observe the following instructions may lead to a serious danger of death.

- During normal operation dangerous voltages can occur on instrument terminals and on voltage and current transformers. Energized voltage and current transformers may generate lethal voltages. Follow carefully the standard safety precautions while carrying out any installation or service operation.
- The terminals of the instrument must not be accessible by the user after the installation. The user should only be allowed to access the instrument front panel where the display is located.
Do not use the digital outputs for protection functions nor for power limitation functions. The instrument is suitable only for secondary protection functions.
- The instrument must be protected by a breaking device capable of interrupting both the power supply and the measurement terminals. It must be easily reachable by the operator and well identified as instrument cut-off device.
- The instrument and its connections must be carefully protected against short-circuit.

Precautions: Failure to respect the following instructions may irreversibly damage to the instrument.

- The outputs and the options operate at low voltage level; they cannot be powered by any unspecified external voltage.
- The application of currents not compatible with the current inputs levels will damage to the instrument.

Further documentation may be downloaded from our web site www.electrex.it.
This document is owned by company AKSE that reserves all rights.

DECLARATION OF CONFORMITY

Akse hereby declares that its range of products complies with the following directives EMC 89/336/EEC 73/23CE 93/68 CE and complies with the following product's standard CEI EN 61326 - IEC 61326 CEI EN 61010 - IEC 61010.
The product has been tested in the typical wiring configuration and with peripherals conforming to the EMC directive and the LV directive.

READINGS

MEASURE LIST TABLE

(The parameters available vary according to instrument configuration)

	Short keypress					
	P	P Avg Imp	PAvg Exp	P MD Imp	P MD Exp	
	Q	Q Avg Imp	Q Avg Exp	Q MD Imp	Q MD Exp	
	s	S Avg Imp	S Avg Exp	S MD Imp	S MD Exp	
	PF					

${ }^{\text {CNT }}$	\longrightarrow Short keypress					
	Ea Imp Σ	Ea Imp P	Ea Exp \sum	Ea Exp P	Ea Imp \sum Fase	
	Er Ind Imp \sum	Er Ind Imp P	Er Ind Exp Σ	Er Ind Exp P	$\begin{gathered} E r \operatorname{lnd} \operatorname{Imp} \Sigma \\ \text { Fase } \end{gathered}$	
	Er Cap Imp Σ	Er Cap Imp P	Er Cap Exp Σ	Er Cap Exp P		
	Es Imp \sum	Es Imp P	Es Exp Σ	Es Exp P		
	C1 Pulse Σ	C1 Pulse P				

LEGEND OF PARAMETERS AND SYMBOLS

L-N	Phase Neutral	U	Voltage
L-L	Phase Phase	I	Current
THD	Total Harmonic Distortion	In	Neutral current
Avg	Average (rolling) value	P	Active Power
MD	Maximum Demand	Q	Reactive Power
Imp	Import value	S	Apparent Power
Exp	Export value	PF	Power Factor
Ind	Inductive	Ea	Active Energy
Cap	Capacitive	Er	Reactive Energy
Min	Minimum values (10 cycles time base)	Es	Apparent Energy
Max	Maximum values (10 cycles time base)	f	Frequency
CNT Σ	Pulse count (total)		
CNT P	Pulse count (partial)		

MECHANICAL CHARACTERISTICS	
Case	Self-extinguishing plastic material class V0
Protection degree	IP40 on front panel, IP20 terminals side
Size	$105 \times 90 \times 58 \mathrm{~mm}$ (6 DIN modules)
CURRENT INPUT	Up to 300 Vrms phase-neutral or 520 Vrms phase to phase
Direct insertion	Primary: programmable (max. 400 kV) Secondary: programmable (max. 300 V)
With external VT:	Overload: 900 Vrms phase to phase for 1 sec
Aux. power supply	$230 / 240 \mathrm{Vac}+/-10 \% 50 / 60 \mathrm{~Hz}$
Self consumption:	$<2,5 \mathrm{VA}$
MODELS	EXA D6 RS485 230-240V 2AO4-20mA ENERGY ANALYZER
PFAE611-62	

DEVICE SETUP

	Short keypress	Long keypress
$\begin{gathered} M \in \mathbb{N U} \\ \in N T \in R \\ \hline \end{gathered}$	Confirm parameter	Enter/Exit from the device's configuration menu
\pm	Modify parameter	
\square	Modify parameter	
P/PF	Go to previous value	Go to previous page
CNT	Go to next value	Go to next page
Esc)	Exit without saving the configuration	

SETUP SEQUENCE

$1 \ldots . .400000 / 1 \ldots 300$	
NETWORK	
TYFE	$3 P H-4 W$
EXPORT	H0
CT	$00005 / 5$
YT	$000001 / 001$

AVG-MD TIME (note n.2)		
POWERS	1...60 (minutes)	15
CURRENTS	1... 60 (minutes)	8
	AVG-MII TIWE FOWERS 15 CURRENTS 08	
ALARM 1 / A (note n.11)		
MODE (note n.3)	Normale, 1-OF-3, 3-OF-3, DERIV, UNBAL, UNBAL\%	NORMAL
TYPE (note n.4)	MAX, MIN	MIN
MEAS (note n.5)	Controlled measure. See table n. 1 for register selection	276
THRE (note n.5)	Threshold value	+000.00

ALARM 4 / B		
HYST	1... 100 (\%)	01
DELAY	1...99 (seconds) ON/OFF	$01 \mathrm{~S} / 01 \mathrm{~S}$
AVG (note n.6)	1... 99 (seconds)	01
OUT (note n.7)	Normal, Hold, Pulse-L, Pulse-S	NORMAL
ANALOG OUT 1		
MEAS (note n.5)	Controlled measure. See table n. 1 for register selection	200
MODE	4-20, 0-20	4-20
LOW (note n.9)		000.00
HIGH (note n.9)		000.00
	AHALOG OUT 1 MEAS 276 MODE 4-20 LOW 000.00 HIGH 000.00	
ANALOG OUT 2		
MEAS (note n.5)	Controlled measure. See table n. 1 for register selection	200
MODE	4-20, 0-20	4-20
LOW (note n.9)		000.00
HIGH (note n.9)		000.00
DISPLAY		
CONTRAST	20-45	27
CLEAR REGISTERS		
TOTAL CNT	NO, YES	NO
PARTIAL CNT	NO, YES	NO
MIN-MAX	NO, YES	NO
MAX DEMAND	NO, YES	NO
RESTORE FACTORY SETTINGS	NO, YES	NO
ENTER NEW PASSWORD	0000 ... 9999	0000

TABLE n. 1 (ModBus Registers for alarm configuration)

REGISTER	DESCRIPTION	SYMBOL	UNITS
200	Phase to Neutral Voltage, THD	THD U1N	[\%]
202	Phase to Neutral Voltage, THD	THD U2N	[\%]
204	Phase to Neutral Voltage, THD	THD U3N	[\%]
206	Phase to Phase Voltage, THD	THD U12	[\%]
208	Phase to Phase Voltage, THD	THD U23	[\%]
210	Phase to Phase Voltage, THD	THD U31	[\%]
212	Phase Current, THD	THD I1	[\%]
214	Phase Current, THD	THD I2	[\%]
216	Phase Current, THD	THD 13	[\%]
218	Frequency of U1N	f	[Hz]
220	Phase to Neutral Voltage, RMS Amplitude	U1N	[V]
222	Phase to Neutral Voltage, RMS Amplitude	U2N	[V]
224	Phase to Neutral Voltage, RMS Amplitude	U3N	[V]
226	Phase to Phase Voltage, RMS Amplitude	U12	[V]
228	Phase to Phase Voltage, RMS Amplitude	U23	[V]
230	Phase to Phase Voltage, RMS Amplitude	U31	[V]
232	Phase Current, RMS Amplitude	11	[A]
234	Phase Current, RMS Amplitude	12	[A]
236	Phase Current, RMS Amplitude	13	[A]
238	Neutral Current, RMS Amplitude	IN	[A]
240	Phase Active Power (Imp/Exp)	P1	[W]
242	Phase Active Power (Imp/ Exp)	P2	[W]
244	Phase Active Power (Imp/ Exp)	P3	[W]
246	Phase Reactive Power (Imp/ Exp)	Q1	[var]
248	Phase Reactive Power (Imp/ Exp)	Q2	[var]
250	Phase Reactive Power (Imp/ Exp)	Q3	[var]
252	Phase Apparent Power	S1	[VA]
254	Phase Apparent Power	S2	[VA]
256	Phase Apparent Power	S3	[VA]
258	Phase Power Factor (Imp/ Exp)	PF1	[-]
260	Phase Power Factor (Imp/ Exp)	PF2	[-]
262	Phase Power Factor (Imp/ Exp)	PF3	$[-]$
264	Phase to Neutral Voltage, Mean THD	THD UI	[\%]
266	Phase to Phase Voltage, Mean THD	THD UD	[\%]
268	Phase Current, Mean THD	THD I	[\%]
270	Phase to Neutral Voltage, Mean RMS Amplitude	UI	[V]
272	Phase to Phase Voltage, Mean RMS Amplitude	UD	[V]
274	Three phase current, RMS Amplitude		[A]
276	Total active power (Imp/ Exp)	PS	[W]
278	Total reactive power (Imp/ Exp)	QS	[var]
280	Total apparent power	SS	[VA]
282	Total power factor (Imp/ Exp)	PFS	$[-]$
332	Phase Current, RMS Amplitude, AVG	11 AVG	[A]
334	Phase Current, RMS Amplitude, AVG	12 AVG	[A]
336	Phase Current, RMS Amplitude, AVG	I3 AVG	[A]
344	Total imported active power, AVG	P Imp AVG	[W]
346	Total imported inductive power, AVG	Qind Imp AVG	[var]
348	Total imported capacitive power, AVG	Qcap Imp AVG	[var]
350	Total imported apparent power, AVG	S Imp AVG	[VA]
352	Total exported active power, AVG	P Exp AVG	[W]
354	Total exported inductive power, AVG	Qind Exp AVG	[var]
356	Total exported capacitive power, AVG	Qcap Exp AVG	[var]
358	Total exported apparent power, AVG	S Exp AVG	[VA]
376	External Pulse Counter, With Weight, Total counter or Tariff T1	CNT1 S	
384	External Pulse Counter, With Weight, Partial Counter or Tariff T2	CNT1 P	

LED (1)	Under the sine wave symbol next to the Electrex logo a red LED indicates the operation status
LED (2)	Two red LED, for calibration checking, pulse with a frequency proportional to the active and reactive energy imported.
LED (3)	Two other LEDs, below the white band, indicate the communication activities of the RS485 port (red LED TX, green LED RX)

ALARM SET UP EXAMPLE

To ensure that the exit "DIGITAL OUT 1" remain excited for the alarm duration (latching) when average active power (MEAS 344) exceeds the value of 100 kW , hysteresis, 5% and latency of 5 seconds set the parameters such as table:

ALARM 1 / A	MODE (note n.2)	Normal, 1-OF-3, 3-OF-3, DERIV, UNBAL	NORMAL
	TYPE (note n.3)	MAX, MIN	MAX
	MEAS (note n.4)	Controlled measure. See table n.1 for register selection	344
	THRE (note n.4)	Threshold value	100000
ALARM 1 / B	HYST	$1 \ldots 100$ (\%)	5
	DELAY	$1 \ldots 99$ (seconds)	5
	AVG (note n.5)	$1 \ldots 99$ (seconds)	NORMAL
	OUT (note n.6)	Normal, Hold, Pulse-L, Pulse-S	ALARM
DIGITAL OUT 1	MODE	PULSE, ALARM, REMOTE	NO
	POLARITY	NO, NC	

To ensure that the exit "DIGITAL OUT 2" remain excited for the alarm duration (latching) when average active power (MEAS 344) goes down the value of 90 kW , hysteresis, 5% and latency of 5 seconds set the parameters such as table:

ALARM 2 / A	MODE (note n.2)	Normal, 1-OF-3, 3-OF-3, DERIV, UNBAL	NORMAL
	TYPE (note n.3)	MAX, MIN	MIN
	MEAS (note n.4)	Controlled measure. See table n. 1 for register selection	344
	THRE (note n.4)	Threshold value	90000
ALARM 2 / B	HYST	1... 100 (\%)	5
	DELAY	1...99 (seconds)	5
	AVG (note n.5)	1...99 (seconds)	1
	OUT (note n.6)	Normal, Hold, Pulse-L, Pulse-S	NORMAL
DIGItaL OUT 2	MODE	PULSE, ALARM, REMOTE	ALARM
	POLARITY	NO, NC	NO

VOLTAGE AND CURRENT CONNECTION

 the applicable diagrams that follow.

 and to the distance to be covered. The max cross-section for the terminals is $2,5 \mathrm{~mm}^{2}$ if stranded and $4 \mathrm{~mm}^{2}$ if rigid.
N.B. The CT secondary must always be in short circuit when not connected to the instrument in order to avoid damages and risks for the operator.
 correspondence and connection diagrams gives rise to measurement errors. (*) The grounding of S2 must be close to the CT and not near the instrument.

STAR 4W (4 WIRES) 3PH-4W MV

STAR 4W (4 WIRES) 3PH-4W-BAL

akse srl Via Aldo Moro, 3942124 Reggio Emilia Italy Tel. +390522924244 Fax +390522924245 info@akse.it www.akse.it P.I. 01544980350 R.E.A. 194296 Cap. Soc. Euro 85.800,00 i.v.

TRIANGLE 2CT (3 WIRES) 3PH-3W

TRIANGLE 2CT (3 WIRES) 3PH-3W

POWER SUPPLY AND SERIAL LINE CONNECTION

The instrument is fitted with a separate power supply. The power supply terminals are numbered (17e18). Use cables with max cross-section of $2,5 \mathrm{~mm}^{2}$ if stranded, $4 \mathrm{~mm}^{2}$ if rigid.

$4 \sqrt[5]{5} 5 \sqrt{5} \sqrt{0} 55$
the energy saving technology www.electrex.it - info@electrex.it

