KILO F RJ45 and NET D6

INSTALLATION INSTRUCTIONS

COPYRIGHT

Electrex is a trademark of Akse S.r.l. All rights reserved.
It is forbidden to duplicate, adapt, transcript this document without Akse written authorization, except when regulated accordingly by the Copyright Laws.

WARRANTY

This product is covered by a warranty against material and manufacturing defects for a 24 months period from the manufacturing date.
The warranty does not cover the defects that are due to:

- Negligent and improper use
- Failures caused by atmospheric hazards
- Acts of vandalism
- Wear out of materials
- Firmware upgrades

Akse reserves the right, at its discretion, to repair or substitute the faulty products
The warranty is not applicable to the products that will result defective in consequence of a negligent and improper use or an operating procedure not contemplated in this manual.

RETURN AND REPAIR FORMALITIES

Akse accepts the return of instruments for repair only when authorized in advance. The transport costs are at customer charge.

RE-SHIPPING OF REPAIRED PRODUCT

The terms for re-shipment of repaired products are ex-works, i.e. the transport costs are at customer charge.
Products returned as detective but found to be perfectly working by our laboratories, will be charged a flat fee to account for checking and testing time irrespective of the warranty terms

SAFETY

This instrument was manufactured and tested in compliance with IEC 61010-1 CAT III 300 V class 2 standards for operating voltages up to 300 VAC rms phase to neutral.
In order to maintain this condition and to ensure safe operation, the user must comply with the indications and markings contained in the following instructions

- When the instrument is received, before starting its installation, check that it is intact and no damage occurred during transport.
- Before mounting, ensure that the instrument operating voltages and the mains voltage are compatible then proceed with the installation
- The instrument power supply needs no earth connection.
- The instrument is not equipped with a power supply fuse; a suitable external protection fuse must be foreseen by the contractor.
- Maintenance and/or repair must be carried out only by qualified, authorized personnel
- If there is ever the suspicion that safe operation is no longer possible, the instrument must be taken out of service and precautions taken against its accidental use.
- Operation is no longer safe when:

1) There is clearly visible damaged.
2) The instrument no longer functions.
3) After lengthy storage in unfavorable conditions.
4) After serious damage occurred during transport

The instruments must be installed in respect of all the local regulations.

OPERATOR SAFETY

Warning: Failure to observe the following instructions may lead to a serious danger of death.

- During normal operation dangerous voltages can occur on instrument terminals and on voltage and current transformers. Energized voltage and current transformers may generate lethal voltages. Follow carefully the standard safety precautions while carrying out any installation or service operation.
- The terminals of the instrument must not be accessible by the user after the installation. The user should only be allowed to access the instrument front panel where the display is located.
- Do not use the digital outputs for protection functions nor for power limitation functions. The instrument is suitable only for secondary protection functions
The instrument must be protected by a breaking device capable of interrupting both the power supply and the measurement terminals. It must be easily reachable by the operator and well identified as instrument cut-off device.
- The instrument and its connections must be carefully protected against short-circuit.

Precautions: Failure to respect the following instructions may irreversibly damage to the instrument.

- The outputs and the options operate at low voltage level; they cannot be powered by any unspecified external voltage
- The application of currents not compatible with the current inputs levels will damage to the instrument.

Further documentation may be downloaded from our web site www.electrex.it.
This document is owned by company AKSE that reserves all rights.

DECLARATION OF CONFORMITY

Akse hereby declares that its range of products complies with the following directives EMC 89/336/EEC 73/23CE 93/68 CE and complies with the following product's standard CEI EN 61326 - IEC 61326 CEI EN 61010 - IEC 61010.
The product has been tested in the typical wiring configuration and with peripherals conforming to the EMC directive and the LV directive.

READINGS

Keep pressed for 2 seconds to display: - Type of instrument - Firmware version - Serial number RS485 address

MEASURE LIST TABLE

(The parameters available vary according to instrument configuration)

P/PF	Short keypress					
	P	P Avg Imp	PAvg Exp	P MD Imp	P MD Exp	
	Q	Q Avg Imp	Q Avg Exp	Q MD Imp	Q MD Exp	
	S	S Avg Imp	S Avg Exp	S MD Imp	S MD Exp	
	PF					
\pm	\longrightarrow Short keypress					
	U L-N / f	U THD L-N	U L-N Min	U L-N Max		
	UL-L/f	U THD L-L	U L-L Min	U L-L Max		
\square	\longrightarrow Short keypress					
	In	1	ITHD	1 Max	I AVG	IMD
${ }^{\text {CNT }}$	\longrightarrow Short keypress					
	Ea $\operatorname{lmp} \Sigma$	Ea Imp P	Ea Exp Σ	Ea Exp P	$\begin{gathered} \text { Ea Imp } \Sigma \\ \text { Fase } \\ \hline \end{gathered}$	
	Er Ind $\operatorname{lmp} \Sigma$	Er Ind Imp P	Er Ind Exp Σ	Er Ind Exp P	$\begin{gathered} \mathrm{Er} \operatorname{lnd} \operatorname{lmp} \Sigma \\ \text { Fase } \\ \hline \end{gathered}$	
	Er Cap Imp Σ	Er Cap Imp P	Er Cap Exp \sum	Er Cap Exp P		
	Es Imp Σ	Es Imp P	Es Exp Σ	Es Exp P		
	C1 Pulse Σ	C1 Pulse P				

LEGEND OF PARAMETERS AND SYMBOLS

L-N	Phase Neutral	U	Voltage
L-L	Phase Phase	I	Current
THD	Total Harmonic Distortion	In	Neutral current
Avg	Average (rolling) value	P	Active Power
MD	Maximum Demand	Q	Reactive Power
Imp	Import value	S	Apparent Power
Exp	Export value	PF	Power Factor
Ind	Inductive	Ea	Active Energy
Cap	Capacitive	Er	Reactive Energy
Min	Minimum values (10 cycles time base)	Es	Apparent Energy
Max	Maximum values (10 cycles time base)	f	Frequency
CNT Σ	Pulse count (total)		
CNT P	Pulse count (partial)		

MECHANICAL CHARACTERISTICS	
Case	Self-extinguishing plastic material class V0
Protection degree	IP40 on front panel, IP20 terminals side
Size	$105 \times 90 \times 58 \mathrm{~mm}$ (6 DIN modules)
VOLTAGE INPUT	
Direct insertion	Up to 300 Vrms phase-neutral or 520 Vrms phase to phase
With external VT:	Primary: programmable (max. 400 kV) Secondary: programmable (max. 300 V)
	Overload: 900 Vrms phase to phase for 1 sec
Aux. power supply	85/265Vac +/- 10\% 50/60Hz
Self consumption:	< 2 watt
MODELS	
PFNK6-FH719-0M0	KILO F RJ45 D6 H 85 $\div 265 \mathrm{~V}$ 1DI 2DO ENERGY ANALYZER \& DATA MANAGER
PFNK6-FQ719-0MM	KILO F RJ45 D6 PQ 85265V 1DI 2DO ENERGY ANALYZER \& DATA MANAGER
PFNK6-FQ519-121	KILO F NET D6 PQ WEB 85265V 1DI 2DO ENERGY ANALYZER \& WEB DATA MANAGER
PFNK6-FQ519-F21	KILO F NET D6 PQ FULL 85265V 1DI 2DO ENERGY ANALYZER \& WEB DATA MANAGER
PFNK6-1Q519-F21	KILO NET D6 PQ FULL 85*265V 1DI 2DO ENERGY ANALYZER \& WEB DATA MANAGER
PFNK6-FQ519-A21	KILO F NET D6 PQ WEB CHARTS 85*265V 1DI 2DO ENERGY ANALYZER \& WEB DATA MANAGER

DESCRIPTION OF KEYS		
	Short keypress	Long keypress
	Confirm parameter	Confirm setup
1 	Modify parameter	
$\frac{1}{\square}$	Modify parameter	
P/PF	Go to previous value	Go to previous page
$\stackrel{\mathrm{CNT}}{\square}$	Go to next value	Go to next page
(sc)	Exit without saving the configuration	

MEASURES

On "MEAS" page are displayed the main measures of the device (voltage, current, power, energy, etc.)

	ELECTREX	
KILO	D6 ADITR 2	ET
	X****X	HAEM
MAC	\% $6 \times * * * * * x$	PA

HARMONICS

On "HARM" page are displayed the harmonics (from $2^{\text {nd }}$ to the $32^{\text {nd }}$) for voltage and current.

Select measure (U1N, U2N, U3N, I1, I2, I3)
Select harmonic (from H2 to H32-value in \%)
Exit without saving the configuration

PAGE	
ELECTREX	MEAS
KILO DE ADIR 247	HARM
WER X X (\% \%	Page
SN XX\%**X	STAT
c WW\%*****	SET

In development

STAT

The "STAT" page shows the assigned IP address of the LAN and WI-FI port (if present)

RESET

The "RESET" page allows to reset the total (TOT) and partial (PAR) energy counters, the minimum and maximum values (MAX) and the historical maximum values (MD).

DEVICE SETUP

SETUP SEQUENCE

PAGE	PARAMETERS	VALUES AVAILABLE	DEFAULT
PASSWORD REQUEST		0000 ... 9999	0000
MEAS-A Note n. 1			
	NET	3PH-4W, 2PH-2W, 1PH-2W, 3PH-3W-2C	3P-4W
		IMP / EXP	EXP
	IMAX	500, 2000, 8000	8000
	VT	1... $400000 / 1$... 300	1/1

NOTE n. 1		
NET	3PH-3W-2CT	2 phases 3 wires, triangle
	3PH-4W	3 phases 4 wires, Star
	2PH-2W	2 phases 2 wires, biphase
	1PH-2W	1 phase 2 wires, monophase
	IMP/EXP	IMP = Only import, EXP = Import/Export
CT	Primary / Secondary of the current transformer (CT)	
VT	Primary / Secondary of the voltage transformer (VT)	
NOTE n .2		
P AVG	Integration time of the average value (AVG) and peak value (MD) for power (from 1 to 60 minutes)	
I AVG	Integration time of the average value (AVG) and peak value (MD) for current (from 1 to 60 minutes)	
MODE	SLAVE	RS485 port set as Slave for the network.
	MASTER	RS485 port set as Master for the network.
TOUT		Predetermined time in which a given operation must be terminated
RETR		Number of communication attempts on the RS485 port
NOTE n .4		
NOTE n .5		
DHCP	Enable / Disable the search for a DHCP server in the network	
IP	IP address of the network interface	
NETM	Subnet mask: defines the belonging range of a host within an IP subnetwork	
GWAY	IP address of the gateway	
NOTE n. 6		
DEF	Select the network interface to be used as default for communication.	
ETH	Enable / Disable the Ethernet port (LAN)	
WIFI	Enable / Disable the Wi-Fi port	
NOTE n .7		
DIM	Enable / Disable dimming of the display	
TIME	Time in seconds after which the display luminosity is reduced. (With DIM enabled)	
LIGHT	Luminosity level of the display	
PULSE	Enable / Disable the flashing of the sine wave symbol light near the Electrex logo.	

Digital Inputs	
Supply voltage (external):	from 10 to 30 Vdc
Current consumption:	from 2 to 10 mA
Max. count frequency	10 or 100 Hz
N.B. For gas meters a galvanic separation is needed per ATEX standards	

N.B. For gas meters a galvanic separation is
needed per ATEX standards

Digital outputs (optocoupled NPN
transistor type for DIN 43864)

Maximum applicable voltage:	27 Vdc

Maximum switchable current: $\quad 27 \mathrm{~mA}$

INPUT \& OUTPUT CONNECTION EXAMPLE

DIP-SWITCH CONFIGURATION

LAN 10/100 ETHERNET PORT

The instrument is equipped with a Ethernet Lan 10/100 Auto-MDI/MDIX port. For the connection can be used a data cable straight or crossover.

Note: the port is not a PoE (Power over Ethernet = device power supply via the Lan port) type. The connection of the device to a PoE port is anyway accepted. The power supply anyway must be always provided by an external power supplier.

EXPBUS PORT

The ExpBus port, configurable via Ethernet port on web pages:

- uses a multicast communication rated at $250 \mathrm{~kb} / \mathrm{sec}$ with collision management
- max cable length : 10 meters
- manages up to 16 modules (but technically can manage up to 126)
- uses the UTP cable, 4 wires used:

2 for the power supply at 9 Vdc
2 for the bidirectional communication
The modules will also power supply the ExpBus port
The cable must be connected in in-out modality (multidrop) as per the RS 485 Bus.

VOLTAGE AND CURRENT CONNECTION

 the applicable diagrams that follow.
Current transformers connection

 correspondence and connection diagrams will result in measurement errors
 instrument.

POWER SUPPLY

The instrument is equipped with a separate power supply. The power supply terminals are numbered (17e 18). Use cables with max cross-section of $2,5 \mathrm{~mm}^{2}$ if stranded, $4 \mathrm{~mm}^{2}$ if rigid.

