LYRA
 INSTALLATION GUIDE

COPYRIGHT

Electrex is a trademark of Akse S.r.I. All rights reserved
It is forbidden to duplicate, adapt, transcript this document without Akse written authorization, except when regulated accordingly by the Copyright Laws.

WARRANTY

This product is covered by a warranty against material and manufacturing defects for a 24 months period from the manufacturing date.
The warranty does not cover the defects that are due to:

- Negligent and improper use
- Failures caused by atmospheric hazards
- Acts of vandalism
- Wear out of materials
- Firmware upgrades

Akse reserves the right, at its discretion, to repair or substitute the faulty products
The warranty is not applicable to the products that will result defective in consequence of a negligent and improper use or an operating procedure not contemplated in this manual.

RETURN AND REPAIR FORMALITIES

Akse accepts the return of instruments for repair only when authorized in advance. The transport costs are at customer charge.

RE-SHIPPING OF REPAIRED PRODUCT

The terms for re-shipment of repaired products are ex-works, i.e. the transport costs are at customer charge.
Products returned as detective but found to be perfectly working by our laboratories, will be charged a flat fee to account for checking and testing time irrespective of the warranty terms.

SAFETY

This instrument was manufactured and tested in compliance with IEC 61010-1 CAT III 300 V class 2 standards for operating voltages up to 300 VAC rms phase to neutral. In order to maintain this condition and to ensure safe operation, the user must comply with the indications and markings contained in the following instructions:

- When the instrument is received, before starting its installation, check that it is intact and no damage occurred during transport.
- Before mounting, ensure that the instrument operating voltages and the mains voltage are compatible then proceed with the installation.
- The instrument power supply needs no earth connection.
- The instrument is not equipped with a power supply fuse; a suitable external protection fuse must be foreseen by the contractor.
- Maintenance and/or repair must be carried out only by qualified, authorized personnel
-If there is ever the suspicion that safe operation is no longer possible, the instrument must be taken out of service and precautions taken against its accidental use.
Operation is no longer safe when:
- There is clearly visible damaged.
- The instrument no longer functions.
- After lengthy storage in unfavorable conditions
- After serious damage occurred during transport

The instruments must be installed in respect of all the local regulations.

OPERATOR SAFETY

Warning: Failure to observe the following instructions may lead to a serious danger of death.

- During normal operation dangerous voltages can occur on instrument terminals and on voltage and current transformers. Energized voltage and current transformers may generate lethal voltages. Follow carefully the standard safety precautions while carrying out any installation or service operation.
- The terminals of the instrument must not be accessible by the user after the installation. The user should only be allowed to access the instrument front panel where the display is located.
- Do not use the digital outputs for protection functions nor for power limitation functions The instrument is suitable only for secondary protection functions.
- The instrument must be protected by a breaking device capable of interrupting both the power supply and the measurement terminals. It must be easily reachable by the operator and well identified as instrument cut-off device.
- The instrument and its connections must be carefully protected against short-circuit.

Precautions: Failure to respect the following instructions may irreversibly damage to the instrument.

- The outputs and the options operate at low voltage level; they cannot be powered by any unspecified external voltage.
- The application of currents not compatible with the current inputs levels will damage to the instrument.

Further documentation may be downloaded from our web site www.electrex.it.
This document is owned by company AKSE that reserves all rights.

DECLARATION OF CONFORMITY

Akse hereby declares that its range of products complies with the following directives EMC 2014/30/EU, 2014/35/EU and complies with the following product's standard CEI EN 61326 - Ed. 2.0 (2012) - IEC 61326 - Ed. 2.0 (2012) CEI EN 61010 Ed. 3 (2010) - IEC 61010 Ed. 3 (2010). The product has been tested in the typical wiring configuration and with peripherals conforming to the EMC directive and the LV directive.

READINGS

MEASURE LIST TABLE
(The parameters available vary according to instrument configuration)

P/PF	$($		Short ke	ypress		
	P	P Avg Imp	P Avg Exp	P MD Imp	P MD Exp	
	Q	Q Avg Imp	Q Avg Exp	Q MD Imp	Q MD Exp	
	S	S Avg Imp	S Avg Exp	S MD Imp	S MD Exp	
	PF					
U	Short keypress					
	U L-N / f	U THD L-N	U L-N Min	U L-N Max		
	U L-L / f	U THD L-L	U L-L Min	U L-L Max		
\square	Short keypress					
	In	1	I THD	1 Max	I AVG	I MD
\square						
	Ea Imp \sum	Ea Imp P	Ea Exp \sum	Ea Exp P	$\begin{gathered} \text { Ea Imp } \sum \\ \text { Fase } \\ \hline \end{gathered}$	
	Er Ind Imp \sum	Er Ind Imp P	Er Ind Exp \sum	Er Ind Exp P	$\begin{gathered} \text { Er Ind Imp } \sum \\ \text { Fase } \\ \hline \end{gathered}$	
	Er Cap Imp \sum	Er Cap Imp P	Er Cap Exp \sum	Er Cap Exp P		
	Es $\operatorname{lmp} \sum$	Es Imp P	Es Exp \sum	Es Exp P		
	C1 Pulse Σ	C1 Pulse P				

LEGEND OF PARAMETERS AND SYMBOLS

L-N	Phase Neutral	U	Voltage
L-L	Phase Phase	I	Current
THD	Total Harmonic Distortion	In	Neutral current
Avg	Average (rolling) value	P	Active Power
MD	Maximum Demand	Q	Reactive Power
Imp	Import value	S	Apparent Power
Exp	Export value	PF	Power Factor
Ind	Inductive	Ea	Active Energy
Cap	Capacitive	Er	Reactive Energy
Min	Minimum values (10 cycles time base)	Es	Apparent Energy
Max	Maximum values (10 cycles time base)	f	Frequency
CNT Σ	Pulse count (total)		
CNT P	Pulse count (partial)		

MECHANICAL CHARACTERISTICS

Case	Self-extinguishing plastic material class V0
Protection degree	IP40 on front panel, IP20 terminals side
Size	$150 \times 45 \times 100 \mathrm{~mm}$
VOLTAGE INPUT	Up to 300 Vrms phase-neutral or 519 Vrms phase to phase
Direct insertion	Primary: programmable (max. 400 kV) Secondary: programmable (max. 300 V)
With external VT:	Overload: 900 Vrms phase to phase for 1 sec
	$85 \div 265 \mathrm{Vac}+/-10 \% 50 / 60 \mathrm{~Hz}$
Aux. power supply	$<2,5 \mathrm{VA}$
Self consumption:	

MODELS

PFALT-EH5D90-110
DEVICE SETUP

DESCRIPTION OF KEYS

	Short keypress	Long keypress		Short keypress	Long keypress
$\begin{gathered} M \in N U \\ \text { ENTER } \end{gathered}$	Confirm parameter	Setup confirmation	P/PF	Go to previous value	Go to previous page
\pm	Modify parameter		$\stackrel{\text { CNT }}{ } \stackrel{\text { c }}{ }$	Go to next value	Go to next page
$\stackrel{1}{7}$	Modify parameter			Exit without saving the configuration	

ENTER THE SETUP		EXIT THE SETUP	
Push for 2 seconds	$\begin{gathered} M \in N U \\ \in N T \in R \end{gathered}$	Push for 2 seconds	
Using the keys select SET from the menu			
Push the key			

SETUP SEQUENCE

PAGE	PARAMETERS	VALUES AVAILABLE	DEFAULT
PASSWORD			
	PASSWORD	0000 ... 9999	0000
MEAS-A Note n. 1			
	NET	$3 \mathrm{PH}-4 \mathrm{~W}, 2 \mathrm{PH}-2 \mathrm{~W}, 1 \mathrm{PH}-2 \mathrm{~W},$ $3 \mathrm{PH}-3 \mathrm{~W}-2 \mathrm{C}$	3PH-4W
	EXPORT	IMP / EXP	EXP
	CT	100,32,16 / 100,32,16	100/100
	VT	400000/300	1/1
MEAS-B Note n. 2			
I AVG 8PANG 15	I AVG	1...60 (minutes)	8
	P AVG	1... 60 (minutes)	15
RS485-A Note n. 3			
RS4E5-A MODE SLANE TOUT 93000 RETR 3	MODE	SLAVE, MASTER	SLAVE
	TOUT	100... 10000 (ms)	3000
	RETR	0... 9	3
RS485-B			
$$	ADDR (485 address)	1 ... 247	247
	COM1 (Baud rate)	$\begin{aligned} & 2400,4800,9600,19200, \\ & 38400 \end{aligned}$	38400
	COM1 (Data Bit)	7 or 8	8
	COM2 (Parity)	$\mathrm{N}=$ no parity, E = even parity, $\mathrm{O}=$ odd parity	N
	COM (Stop bit)	1 or 2	2
	S.T. (Silent Time)	0 ... 1000 mS (Step of 10)	100
ETH Note n. 4			
ETHIHCP NIP 192.168.027.001NETM 255.255.255.g00GNAW 127.50. GED.	DHCP	N, Y	N
	IP	xxx.xxx.xxx.xxx	192.168.027.001
	NETM	xxx.xxx.xxx.xxx	255.255.255.000
	GWAY	xxx.xxx.xxx.xxx	127.000.000.001
WIFI Note n. 4			
WIFI DHCP N IP 192.168.026.001 NETM 255.255.255. 900 GWAY 127. EDO. GED.EDI	DHCP	N, Y	N
	IP	xxx.xxx.xxx.xxx	192.168.026.001
	NETM	xxx.xxx.xxx.xxx	255.255.255.000
	GWAY	xxx.xxx.xxx.xxx	127.000.000.001
NET Note n. 5			
NET DEF ETH ETH Y WIFI Y	DEF	ETH, WIFI	ETH
	ETH	N, Y	Y
	WIFI	N, Y	Y
LCD Note n. 6			
$\begin{aligned} & \text { LCD } \\ & \text { IIM DISAELE } \\ & \text { TME } 3 \\ & \text { LIEHT OSGD } \\ & \text { FULSE ENABLE } \end{aligned}$	DIM	DISABLE, ENABLE	DISABLE
	TIME	1...90 (sec)	3
	LIGHT	300... 1000	500
	PULSE	DISABLE, ENABLE	ENABLE
ALARM 1 / A Note n. 7			
ALARM 1-A MODE NORMAL TYFE MAX MEAS GED THRE + 000. 600	MODE	NORMAL, 1-OF-3, 3-OF-3, UNBAL\%, DERIV, UNBAL	NORMAL
	TYPE	MIN, MAX	MAX
	MEAS (note $n .5$)	Controlled measure. See table n. 1 for register selection	000
	THRE (note $n .5$)	Threshold value	+000.000
ALARM 1 / B Note n. 8			
ALARH I-B HYST 65 DEL 01 / S / 61 / s ANG 65 OUT NORM	HYST	0... 99 (\%)	05
	DEL	0... 99 / S,M / $0 . . .99$ / S,M	01/S / 01 / S
	AVG	0...99 (sec)	05
	OUT	NORMAL, PULSE-S, PULSE-L, HOLD	NORMAL
ALARM 2 / A (see ALARM 1/A) ALARM 2 / B (see ALARM 1/B) ALARM 3 A (see ALARM 1/A)			

RESET

The "RESET" page allows to reset the total (TOT) and partial (PAR) energy counters, the minimum and maximum values (MAX) and the historical maximum values (MD).

STAT

The "STAT" page shows the assigned IP address of the LAN and WI-FI port (if

TABLE n. 1 - Part of ModBus Registers; for e.g. alarm configuration.

(Contact us for the full list).

REGISTER	DESCRIPTION	SYMBOL	UNIT
218	Frequency of U1N	f	[Hz]
220	Phase to Neutral Voltage, RMS Amplitude	U1N	[V]
222	Phase to Neutral Voltage, RMS Amplitude	U2N	[V]
224	Phase to Neutral Voltage, RMS Amplitude	U3N	[V]
226	Phase to Phase Voltage, RMS Amplitude	U12	[V]
228	Phase to Phase Voltage, RMS Amplitude	U23	[V]
230	Phase to Phase Voltage, RMS Amplitude	U31	[V]
232	Phase Current, RMS Amplitude	11	[A]
234	Phase Current, RMS Amplitude	12	[A]
236	Phase Current, RMS Amplitude	13	[A]
238	Neutral Current, RMS Amplitude	IN	[A]
240	Phase Active Power (Imp/Exp)	P1	[W]
242	Phase Active Power (Imp/Exp)	P2	[W]
244	Phase Active Power (Imp/Exp)	P3	[W]
246	Phase Reactive Power (Imp/Exp)	Q1	[var]
248	Phase Reactive Power (Imp/Exp)	Q2	[var]
250	Phase Reactive Power (Imp/Exp)	Q3	[var]
252	Phase Apparent Power	S1	[VA]
254	Phase Apparent Power	S2	[VA]
256	Phase Apparent Power	S3	[VA]
258	Phase Power Factor (Imp/ Exp)	PF1	[-]
260	Phase Power Factor (Imp/ Exp)	PF2	[-]
262	Phase Power Factor (Imp/ Exp)	PF3	$[-]$
270	Phase to Neutral Voltage, Mean RMS Amplitude	UI	[V]
272	Phase to Phase Voltage, Mean RMS Amplitude	UD	[V]
274	Three phase current, RMS Amplitude	1	[A]
276	Total active power (Imp/ Exp)	PS	[W]
278	Total reactive power (Imp/ Exp)	QS	[var]
280	Total apparent power	SS	[VA]
282	Total power factor (Imp/ Exp)	PFS	[-]
332	Phase Current, RMS Amplitude, AVG	11 AVG	[A]
334	Phase Current, RMS Amplitude, AVG	12 AVG	[A]
336	Phase Current, RMS Amplitude, AVG	13 AVG	[A]
344	Total imported active power, AVG	P Imp AVG	[W]
346	Total imported inductive power, AVG	Qind Imp AVG	[var]
348	Total imported capacitive power, AVG	Qcap Imp AVG	[var]
350	Total imported apparent power, AVG	S Imp AVG	[VA]
352	Total exported active power, AVG	P Exp AVG	[W]
354	Total exported inductive power, AVG	Qind Exp AVG	[var]
356	Total exported capacitive power, AVG	Qcap Exp AVG	[var]
358	Total exported apparent power, AVG	S Exp AVG	[VA]

VOLTAGE CONNECTION

Use cables with max cross-section of $2,5 \mathrm{~mm}^{2}$ if stranded, $4 \mathrm{~mm}^{2}$ if rigid and connect them to the clamps marked VOLTAGE INPUT on the instrument according to the applicable diagrams that follow.

DIP-SWITCH CONFIGURATION			
DIP FUNCTIO		SLAVE	MASTER *
1 Line term	nation resistance (120 Ohm)	OFF	ON
2 Fail safe	sistance B (-)	OFF	ON
3 Fail safe	sistance A (+)	OFF	ON
4 Not used		OFF	OFF
* with RS-485	aaster PUK activated		
PORTA LAN $10 / 100$ ETHERNET			
ETHERNET	The instrument is equipped with a Ethernet Lan 10/100 Auto-MDI/MDIX port. For the connection can be used a data cable straight or crossover. Note: the port is not a PoE (Power over Ethernet = device power supply via the Lan port) type. The connection of the device to a PoE port is anyway accepted. The power supply anyway must be always provided by an external power supplier.		
EXPBUS PORT			
	The ExpBus port, configurable via Ethernet port on web pages: - uses a multicast communication rated at $250 \mathrm{~kb} / \mathrm{sec}$ with collision management - max cable length : 10 meters - manages up to 16 modules (but technically can manage up to 126) - uses the UTP cable, 4 wires used: 2 for the power supply at 9 Vdc 2 for the bidirectional communication The modules will also power supply the ExpBus port The cable must be connected in in-out modality (multidrop) as per the RS485 Bus.		

akse srl Via Aldo Moro, 3942124 Reggio Emilia Italy Tel. +390522924244 Fax +390522924245 info@akse.it www.akse.it P.I. 01544980350 R.E.A. 194296 Cap. Soc. Euro 85.800,00 i.v.

CURRENT CONNECTION

Connect the CT outputs to the terminals marked I1, I2, I3 (CURRENT INPUT) of the instrument according to the applicable diagrams that follow.

Note: Scrupulously respect the matching of phase between the voltage signals and current signals. Failure to comply with this correspondence and connection diagrams gives rise to measurement errors.

MESSAGE "CFG ERROR" some wrong parameters are typed.

POWER SUPPLY

The instrument is equipped with a separate power supply. The power supply terminals are numbered (17) and (18). Use cables with max cross-section of $2,5 \mathrm{~mm}^{2}$ if stranded, $4 \mathrm{~mm}^{2}$ if rigid.

SERIAL LINE CONNECTION

RS485	
Address	27
Baud rate	38400
Parity	None
Bit of Stop	2

Max cable length: 1000 meters.
ロ ELEETREMK
the energy saving technology www.electrex.it - info@electrex.it

